
Guide

Class 5 SmartMotor

Technology with
TM

®

For themobile version of this guide, see:
animatics.com/docs/guides-html/c5_canopen/

https://www.animatics.com/docs/guides-html/c5_canopen/

Copyright Notice
©2013-2019, Moog Inc., Animatics.

Moog Animatics Class 5 SmartMotor™ CANopen Guide, Rev. H, PN:SC80100001-001.

This manual, as well as the software described in it, is furnished under license and may be
used or copied only in accordance with the terms of such license. The content of this manual is
furnished for informational use only, is subject to change without notice and should not be
construed as a commitment by Moog Inc., Animatics. Moog Inc., Animatics assumes no
responsibility or liability for any errors or inaccuracies that may appear herein.

Except as permitted by such license, no part of this publication may be reproduced, stored in a
retrieval system or transmitted, in any form or by any means, electronic, mechanical,
recording, or otherwise, without the prior written permission of Moog Inc., Animatics.

The programs and code samples in this manual are provided for example purposes only. It is
the user's responsibility to decide if a particular code sample or program applies to the
application being developed and to adjust the values to fit that application.

Moog Animatics and the Moog Animatics logo, SmartMotor and the SmartMotor logo,
Combitronic and the Combitronic logo are all trademarks of Moog Inc., Animatics. CiA and
CANopen are registered community trademarks of CAN in Automation e.V. Other trademarks
are the property of their respective owners.

Please let us know if you find any errors or omissions in this manual so that we can improve it
for future readers. Such notifications should contain the words "CANopen Guide" in the subject
line and be sent by e-mail to: animatics_marcom@moog.com. Thank you in advance for your
contribution.

Contact Us:

Americas - West
Moog Animatics
2581 Leghorn Street
Mountain View, CA 94043
USA

Americas - East
Moog Animatics
750 West Sproul Road
Springfield, PA 19064
USA

Tel: 1 650-960-4215 Tel: 1 610-328-4000 x3999
Fax: 1 610-605-6216

Support: 1 (888) 356-0357

Website: www.animatics.com

Email: animatics_sales@moog.com

Table of Contents
Introduction 10

Purpose 11

Combitronic Technology 11

I/O Device CAN Bus Master 11

Time Sync for Electronic Gearing and Camming 12

Abbreviations 14

Safety Information 15

Safety Symbols 15

Other Safety Considerations 15

Motor Sizing 15

Environmental Considerations 15

Machine Safety 16

Documentation and Training 17

Additional Equipment and Considerations 17

Safety Information Resources 17

Additional Documents 18

Related Guides 18

Other Documents 18

Additional Resources 19

CANopen Resources 19

CANopen Overview 20

CANopen Description 21

CAN (CAN Bus) 21

CANopen 21

PDO and SDOCommunication 22

SDO 22

PDO 23

COB-ID Allocation 24

NMT States 26

NMT Control 27

NMT Summary 27

NMT State Machine Diagram 28

PDO Communications 28

Peer-to-Peer Communications 29

Synchronous Communications 29

Moog Animatics Class 5 CANopen Guide Rev. H

Page 3 of 233

Supported Features 30

Supported 31

Motion Modes 31

NMT State Machine Master 31

PDO Transmit on Event 31

PDO Transmit on Timer Only 32

PDO Transmit on Sync 32

Dynamic PDO Mapping 32

Heartbeat Producer 32

Sync Producer 32

Not Supported 33

Emergency Messages 33

Saving Parameters 33

Heartbeat Consumer 33

MPDOCommunications 33

CAN Bus Bit Rate 33

PDO Transmit on RTR (Remote frames) 33

Node Guarding 33

TIME Service 33

Sync Start 33

Connections, Wiring and Status LEDs 34

Connectors and Pinouts 35

D-Style Motor Connectors and Pinouts 35

D-Style Motors: CDS Option Schematic 35

CDS on the DA-15 Connector 35

CDS on the 7W2 Connector (CDS7) 36

M-Style Motor Connectors and Pinouts 39

Cable Diagram 39

CAN Multidrop Cable Diagram 40

Bus Termination 40

Maximum Bus Length 41

Status LEDs 42

Other Communications with the Motor 43

Manufacturer-Specific Objects 44

I/O 45

User Variables 45

Moog Animatics Class 5 CANopen Guide Rev. H

Page 4 of 233

Calling Subroutines 47

Command Interface (Object 2500h) 48

Command Interface 48

Program Upload/Download 49

Upload from Motor 49

Download to Motor 49

CiA 402 Drive and Motion Control Profile 50

CiA 402 Profile Motion State Machine 51

Control Words, Status Words and the Drive State Machine 51

Status Word (Object 6041h) 52

Control Word (Object 6040h) 53

Motion Profiles 54

Position Mode 54

Absolute Position Mode Summary 55

Absolute Position Mode Example 55

Relative Position Example 57

Velocity Mode 58

Velocity Mode Summary 59

Velocity Mode Example 59

Torque Mode 60

Torque Mode Summary 61

Torque Mode Example 61

Interpolated Position Mode 62

Interpolated Position Mode Summary 63

Example: Short Run on a Single Motor 64

Example: Continuous Run on a Single Motor 65

Example: ResumingMotion in IP Mode 66

Synchronization 66

User Bits 67

Splining 68

Variable-Length Segments 68

HomingMode 68

Homing Summary 69

Homing Example 69

PDO Mapping 71

Overview 72

Mapping and Communication Parameters Objects 73

Moog Animatics Class 5 CANopen Guide Rev. H

Page 5 of 233

Communications Parameters Objects 74

Mapping Parameters Objects 75

Mapping Entries 75

Mapping Procedure 76

Time Sync Motors Mapping Procedure 76

Example Start-up Sequence 78

CANopen User Program Commands 79

Address and Baud Rate Commands 80

CADDR=frm 80

CBAUD=frm 80

CAN Error Reporting Commands 80

=CAN, RCAN 80

RB(2,4), x=B(2,4) 83

Network Control Commands 83

CANCTL(action, value) 83

NMT(address, command code) 85

SDORD(address, obj index, subindex, bytecount) 86

SDOWR(address, obj index, subindex, bytecount, data) 86

Exceptions to NMT, SDORD and SDOWRCommands 87

Troubleshooting 88

SDO Response Error Codes 90

Object Reference 92

Object Categories 96

Communication Profile 97

Object 1000h: Device Type 99

Object 1001h: Error Register 100

Object 1005h: COB-ID SYNC 101

Object 1006h: Communication Cycle Period 103

Object 1008h: Manufacturer Device Name 105

Object 1009h: Manufacturer Hardware Version 106

Object 100Ah: Manufacturer Software Version 107

Object 1013h: High-Resolution Timestamp 108

Object 1017h: Producer Heartbeat Time 109

Object 1018h: Identity Object 110

Object 1200h: Server SDO Parameter 1 111

Object 1400h: Receive PDOCommunication Parameter 1 112

Moog Animatics Class 5 CANopen Guide Rev. H

Page 6 of 233

Object 1401h: Receive PDOCommunication Parameter 2 113

Object 1402h: Receive PDOCommunication Parameter 3 114

Object 1403h: Receive PDOCommunication Parameter 4 115

Object 1404h: Receive PDOCommunication Parameter 5 116

Object 1600h: Receive PDOMapping Parameter 1 117

Object 1601h: Receive PDOMapping Parameter 2 118

Object 1602h: Receive PDOMapping Parameter 3 119

Object 1603h: Receive PDOMapping Parameter 4 120

Object 1604h: Receive PDOMapping Parameter 5 121

Object 1800h: Transmit PDO Communication Parameter 1 122

Object 1801h: Transmit PDO Communication Parameter 2 123

Object 1802h: Transmit PDO Communication Parameter 3 124

Object 1803h: Transmit PDO Communication Parameter 4 125

Object 1804h: Transmit PDO Communication Parameter 5 126

Object 1A00h: Transmit PDOMapping Parameter 1 127

Object 1A01h: Transmit PDOMapping Parameter 2 128

Object 1A02h: Transmit PDOMapping Parameter 3 129

Object 1A03h: Transmit PDOMapping Parameter 4 130

Object 1A04h: Transmit PDOMapping Parameter 5 131

Manufacturer-Specific Profile 132

Object 2000h: Node Id 134

Object 2001h: Bit Rate Index 135

Object 2100h: Port Configuration 136

Object 2101h: Bit IO 137

Object 2200h: User EEPROM 138

Object 2201h: User Variable 139

Object 2202h: Set Position Origin 140

Object 2203h: Shift Position Origin 141

Object 2204h: Mappable 32-bit Variables 142

Object 2205h Negative Software Position Limit 143

Object 2206h Positive Software Position Limit 144

Object 2207h Encoder Modulo Limit 145

Object 2208h Encoder Follow Data 146

Object 2209h Encoder Follow Control 147

Start/Stop Capability 147

Object 220Ah MFMUL 149

Object 220Bh MFDIV 150

Object 220Ch MFA 151

Moog Animatics Class 5 CANopen Guide Rev. H

Page 7 of 233

Object 220Dh MFD 152

Object 2220h: 8-Bit Mappable Variables 153

Object 2221h: 16-Bit Mappable Variables 154

Object 2300h: Bus Voltage 155

Object 2301h: RMS Current 156

Object 2302h: Internal Temperature 157

Object 2303h: Internal Clock 158

Object 2304h: Motor Status 159

Object 2305h: Motor Control 168

Object 2306h: Motor Subroutine Index 169

Object 2307h: Sample Period 170

Object 2308h: Microsecond Clock 171

Object 2309h: GOSUB R2 172

Object 2400h: Interpolation Mode Status 173

Object 2401h: Buffer Control 174

Object 2402h: Buffer Setpoint 175

Object 2403h: Interpolation User Bits 176

Object 2404h: Interpolation Sample Clock 177

Object 2500h: Encapsulated SmartMotor Command 178

Drive andMotion Control Profile 179

Object 6040h: Control Word 181

Object 6041h: Status Word 183

Object 605Ah: Quick Stop Option Code 184

Object 605Dh: Halt Option Code 185

Object 605Eh: Fault Reaction Option Code 186

Object 6060h: Modes of Operation 187

Object 6061h: Modes of Operation Display 189

Object 6062h: Position Demand Value 190

Object 6063h: Position Actual Internal Value 191

Object 6064h: Position Actual Value 192

Object 6065h: Following Error Window 193

Object 606Bh: Velocity Demand Value 194

Object 606Ch: Velocity Actual Value 195

Object 6071h: Target Torque 196

Object 6074h: Torque Demand Value 197

Object 6077h: Torque Actual 198

Object 6079h: DC Link Circuit Voltage 199

Object 607Ah: Target Position 200

Moog Animatics Class 5 CANopen Guide Rev. H

Page 8 of 233

Object 607Ch: Home Offset 201

Object 6080h: Max Motor Speed 203

Object 6081h: Profile Velocity in PP Mode 204

Object 6083h: Profile Acceleration 205

Object 6084h: Profile Deceleration 206

Object 6085h: Quick Stop Deceleration 207

Object 6087h: Torque Slope 208

Object 608Fh: Position Encoder Resolution 209

Object 6098h: HomingMethod 210

Object 6099h: Homing Speeds 213

Object 609Ah: Homing Acceleration 214

Object 60C0h: Interpolation Sub-Mode Select 215

Object 60C1h: Interpolation Data Record 216

Object 60C2h: Interpolation Time Period 217

Object 60C4h: Interpolation Data Configuration 219

Object 60F4h: Following Error Actual Value 220

Object 60FBh: Position Control Parameter Set 221

Object 60FCh: Position Demand Internal Value 223

Object Description 223

Entry Description 223

Object 60FDh: Digital Inputs 224

Object 60FEh: Digital Outputs 226

Object 60FFh: Target Velocity 228

Object 6402h: Motor Type 229

Object 6502h: Supported Drive Modes 230

Object 67FFh: Single Device Type 231

Reference Documents 232

Moog Animatics Class 5 CANopen Guide Rev. H

Page 9 of 233

Introduction

Introduction
This chapter provides information on the purpose and scope of this manual. It also provides
information on safety notation, related documents and additional resources.

Purpose 11

Combitronic Technology 11

I/O Device CAN Bus Master 11

Time Sync for Electronic Gearing and Camming 12

Abbreviations 14

Safety Information 15

Safety Symbols 15

Other Safety Considerations 15

Motor Sizing 15

Environmental Considerations 15

Machine Safety 16

Documentation and Training 17

Additional Equipment and Considerations 17

Safety Information Resources 17

Additional Documents 18

Related Guides 18

Other Documents 18

Additional Resources 19

CANopen Resources 19

Moog Animatics Class 5 CANopen Guide Rev. H

Page 10 of 233

Purpose

Purpose
This manual explains the Moog Animatics Class 5 SmartMotor™ support for the CANopen®
protocol. It describes the major concepts that must be understood to integrate a SmartMotor
slave with a PLC or other CANopen master. However, it does not cover all the low-level details
of the CANopen protocol.

NOTE: The feature set described in this version of the manual refers to motor
firmware 5.x.4.30 or later.

This manual is intended for programmers or system developers who have read and
understand the CiA 402 CANopen specification. Therefore, this manual is not a tutorial on that
specification or the CANopen protocol. Instead, it should be used to understand the specific
implementation details for the Moog Animatics SmartMotor. Additionally, examples are
provided for the various modes of motion and accessing those modes through CANopen to
operate the SmartMotor.

The Object Reference chapter of this manual includes details about the specific objects
available in the SmartMotor through CANopen. The objects include those required by
CANopen, the CiA 402 motion profile, and manufacturer-specific objects added by Moog
Animatics. For details, see Object Reference on page 92.

Combitronic Technology
The most unique feature of the SmartMotor is its ability to communicate with other
SmartMotors and share resources using Moog Animatics’ Combitronic™ technology.
Combitronic is a protocol that operates over a standard CAN interface. It may coexist with
either CANopen or DeviceNet protocols. It requires no single dedicated master to operate.
Each SmartMotor connected to the same network communicates on an equal footing, sharing
all information, and therefore, sharing all processing resources.

For additional details, see the SmartMotor™ Developer's Guide.

I/O Device CAN Bus Master
For firmware version 5.x.4.30 or later, the SmartMotor can interface with standard CiA 301
CANopen devices, such as CANopen valve blocks, CANopen I/O blocks, CANopen encoders,
and many other devices. This means through CAN and Combitronic communications, you now
have full machine control with just a SmartMotor as the CAN bus master—no other external
bus master is required. Objects and commands have been added/modified to provide this
functionality.

NOTE: This capability is currently available on Class 5 SmartMotors only.

Basic control allows 8, 16, or 32-bit sized data objects with support for both PDO and SDO
protocols. The supported profiles include but are not limited to I/O profile, encoder profile,
and DS4xx profile. This provides the ability to:

l Dynamically map SmartMotor PDOs, map another device's PDOs, start the NMT state

l A SmartMotor can send/receive up to 5 PDOs each for Rx (receive) and Tx (transmit)

l Read/write SDOs in expedited mode only, which works for up to 32-bit data

Moog Animatics Class 5 CANopen Guide Rev. H

Page 11 of 233

Time Sync for Electronic Gearing and Camming

Multiple SmartMotors and multiple I/O devices may be on the same CAN bus. This combined
with Combitronic motor-to-motor communications allows for complex, multi-axis, multi-I/O-
device network control. Refer to the following figure.

Be sure to follow proper guidelines for CAN bus cabling and termination.

CANopen

REMOTE I/O

CANopen Valve Block

CANopen

ABS Encoder

Without data collision!
TM

Motor to MotorMotor to I/O®

SmartMotor as a CAN Bus Master

Related objects are: 2220h, 2221h and 2204h. For details, see Object Reference on page 92.

Related commands are: NMT, SDORD, SDOWR, CANCTL, and B/RB. For details, see the
descriptions in this guide and in the SmartMotor Developer's Guide.

Example user programs are shown in the SmartMotor Developer's Guide, Part 3: Examples.

Time Sync for Electronic Gearing and Camming
Beginning with firmware 5.x.4.30 or later, the SmartMotor provides precise time
syncronization between motors for electronic gearing and camming applications (for example,
traverse and take-up spooling).

NOTE: This capability is currently available on Class 5 SmartMotors only.

The CANopen objects related to this are:

l 1005h: Specifies the COB-ID used for the Synchronization object (transmit or receive).

l 1006h: Defines the communication cycle period in microseconds for transmission of the
sync message.

l 2207h: Defines the encoder modulo limit in units of encoder counts.

l 2208h: Accepts data from a network (CANopen) based encoder. Three different data
sizes are provided to handle PDO mapping to data sources of 8, 16, and 32 bits.

l 2209h: Controls the behavior for the mode of following a network encoder and/or use of
objects 220Ch and 220Dh.

l 220Ah: Specifies the multiplier for external encoder mode follow with ratio
MFMUL/MFDIV.

l 220Bh: Specifies the divisor for external encoder mode follow with ratio MFMUL/MFDIV.

Moog Animatics Class 5 CANopen Guide Rev. H

Page 12 of 233

Time Sync for Electronic Gearing and Camming

l 220Ch: Sets the ascend ramp to the specified sync ratio from a ratio of zero.

l 220Dh: Sets the descend ramp from the specified sync ratio to a ratio of zero.

For details on these objects, refer to the corresponding object descriptions in the Object
Reference chapter of this guide.

For a detailed description of motor following, electronic gearing and camming operations,
refer to the SmartMotor Developer's Guide.

For an example PDO mapping and application start up sequence, see Time Sync Motors
Mapping Procedure on page 76. This is based on an external PLC/master.

An example user program is shown in the SmartMotor Developer's Guide, Part 3: Examples.
This is based on a SmartMotor acting as the CANopen master.

Moog Animatics Class 5 CANopen Guide Rev. H

Page 13 of 233

Abbreviations

Abbreviations
The following table provides a list of abbreviations used in this manual and their descriptions.

Abbreviation Description

ACK Acknowledgment

ADU Acceleration/Deceleration Units

CiA CAN in Automation

COB Communication Object

COB-ID Communication Object Identification

CSP Cyclic Synchronous Position (mode)

CST Cyclic Synchronous Torque (mode)

CSV Cyclic Synchronous Velocity (mode)

DC Direct Current

FSA Finite State Automaton

HM Homing (mode)

IN Input

INIT Initialization (state)

NMT Network Management (state)

OP Operational (state)

OUT Output

PDO Process Data Object

PDS Power Drive System

PDS FSA Power Drive System Finite State Automaton

PP Profile Position (mode)

PREOP Pre-Operational (state)

PU Position Units

PV Profile Velocity (mode)

RxPDO Receive PDO

SDO Service Data Object

SMI SmartMotor Interface (software)

TQ Torque (mode)

TxPDO Transmit PDO

VU Velocity Units

Moog Animatics Class 5 CANopen Guide Rev. H

Page 14 of 233

Safety Information

Safety Information
This section describes the safety symbols and other safety information.

Safety Symbols
The manual may use one or more of the following safety symbols:

WARNING: This symbol indicates a potentially nonlethal mechanical hazard,
where failure to follow the instructions could result in serious injury to the
operator or major damage to the equipment.

CAUTION: This symbol indicates a potentially minor hazard, where failure to
follow the instructions could result in slight injury to the operator or minor
damage to the equipment.

NOTE: Notes are used to emphasize non-safety concepts or related information.

Other Safety Considerations
The Moog Animatics SmartMotors are supplied as components that are intended for use in an
automated machine or system. As such, it is beyond the scope of this manual to attempt to
cover all the safety standards and considerations that are part of the overall machine/system
design and manufacturing safety. Therefore, the following information is intended to be used
only as a general guideline for the machine/system designer.

It is the responsibility of the machine/system designer to perform a thorough "Risk
Assessment" and to ensure that the machine/system and its safeguards comply with the
safety standards specified by the governing authority (for example, ISO, OSHA, UL, etc.) for
the locale where the machine is being installed and operated. For more details, see Machine
Safety on page 16.

Motor Sizing

It is the responsibility of the machine/system designer to select SmartMotors that are
properly sized for the specific application. Undersized motors may: perform poorly, cause
excessive downtime or cause unsafe operating conditions by not being able to handle the
loads placed on them. The System Best Practices document, which is available on the Moog
Animatics website, contains information and equations that can be used for selecting the
appropriate motor for the application.

Replacement motors must have the same specifications and firmware version used in the
approved and validated system. Specification changes or firmware upgrades require the
approval of the system designer and may require another Risk Assessment.

Environmental Considerations

It is the responsibility of the machine/system designer to evaluate the intended operating
environment for dust, high-humidity or presence of water (for example, a food-processing
environment that requires water or steam wash down of equipment), corrosives or chemicals
that may come in contact with the machine, etc. Moog Animatics manufactures specialized

Moog Animatics Class 5 CANopen Guide Rev. H

Page 15 of 233

Machine Safety

IP-rated motors for operating in extreme conditions. For details, see the Moog Animatics
Product Catalog, which is available on the Moog Animatics website.

Machine Safety

In order to protect personnel from any safety hazards in the machine or system, the
machine/system builder must perform a "Risk Assessment", which is often based on the ISO
13849 standard. The design/implementation of barriers, emergency stop (E-stop)
mechanisms and other safeguards will be driven by the Risk Assessment and the safety
standards specified by the governing authority (for example, ISO, OSHA, UL, etc.) for the
locale where the machine is being installed and operated. The methodology and details of
such an assessment are beyond the scope of this manual. However, there are various sources
of Risk Assessment information available in print and on the internet.

NOTE: The following list is an example of items that would be evaluated when
performing the Risk Assessment. Additional items may be required. The safeguards
must ensure the safety of all personnel who may come in contact with or be in the
vicinity of the machine.

In general, the machine/system safeguards must:

l Provide a barrier to prevent unauthorized entry or access to the machine or system. The
barrier must be designed so that personnel cannot reach into any identified danger
zones.

l Position the control panel so that it is outside the barrier area but located for an
unrestricted view of the moving mechanism. The control panel must include an E-stop
mechanism. Buttons that start the machine must be protected from accidental
activation.

l Provide E-stop mechanisms located at the control panel and at other points around the
perimeter of the barrier that will stop all machine movement when tripped.

l Provide appropriate sensors and interlocks on gates or other points of entry into the
protected zone that will stop all machine movement when tripped.

l Ensure that if a portable control/programming device is supplied (for example, a hand-
held operator/programmer pendant), the device is equipped with an E-stop mechanism.

NOTE: A portable operation/programming device requires many additional
system design considerations and safeguards beyond those listed in this
section. For details, see the safety standards specified by the governing
authority (for example, ISO, OSHA, UL, etc.) for the locale where the
machine is being installed and operated.

l Prevent contact with moving mechanisms (for example, arms, gears, belts, pulleys,
tooling, etc.).

l Prevent contact with a part that is thrown from the machine tooling or other part-
handling equipment.

l Prevent contact with any electrical, hydraulic, pneumatic, thermal, chemical or other
hazards that may be present at the machine.

l Prevent unauthorized access to wiring and power-supply cabinets, electrical boxes, etc.

Moog Animatics Class 5 CANopen Guide Rev. H

Page 16 of 233

Documentation and Training

l Provide a proper control system, program logic and error checking to ensure the safety
of all personnel and equipment (for example, to prevent a run-away condition). The
control system must be designed so that it does not automatically restart the
machine/system after a power failure.

l Prevent unauthorized access or changes to the control system or software.

Documentation and Training

It is the responsibility of the machine/system designer to provide documentation on safety,
operation, maintenance and programming, along with training for all machine operators,
maintenance technicians, programmers, and other personnel who may have access to the
machine. This documentation must include proper lockout/tagout procedures for maintenance
and programming operations.

It is the responsibility of the operating company to ensure that:

l All operators, maintenance technicians, programmers and other personnel are tested
and qualified before acquiring access to the machine or system.

l The above personnel perform their assigned functions in a responsible and safe manner
to comply with the procedures in the supplied documentation and the company safety
practices.

l The equipment is maintained as described in the documentation and training supplied by
the machine/system designer.

Additional Equipment and Considerations

The Risk Assessment and the operating company's standard safety policies will dictate the
need for additional equipment. In general, it is the responsibility of the operating company to
ensure that:

l Unauthorized access to the machine is prevented at all times.

l The personnel are supplied with the proper equipment for the environment and their job
functions, which may include: safety glasses, hearing protection, safety footwear,
smocks or aprons, gloves, hard hats and other protective gear.

l The work area is equipped with proper safety equipment such as first aid equipment,
fire suppression equipment, emergency eye wash and full-body wash stations, etc.

l There are no modifications made to the machine or system without proper engineering
evaluation for design, safety, reliability, etc., and a Risk Assessment.

Safety Information Resources
Additional SmartMotor safety information can be found on the Moog Animatics website; open
the file "109_Controls, Warnings and Cautions.pdf" located at:

http://www.animatics.com/support/moog-animatics-catalog.html

OSHA standards information can be found at:

https://www.osha.gov/law-regs.html

ANSI-RIA robotic safety information can be found at:

http://www.robotics.org/robotic-content.cfm/Robotics/Safety-Compliance/id/23

Moog Animatics Class 5 CANopen Guide Rev. H

Page 17 of 233

http://www.animatics.com/support/moog-animatics-catalog.html
https://www.osha.gov/law-regs.html
http://www.robotics.org/robotic-content.cfm/Robotics/Safety-Compliance/id/23

Additional Documents

UL standards information can be found at:

http://ulstandards.ul.com/standards-catalog/

ISO standards information can be found at:

http://www.iso.org/iso/home/standards.htm

EU standards information can be found at:

http://ec.europa.eu/growth/single-market/european-standards/harmonised-
standards/index_en.htm

Additional Documents
The Moog Animatics website contains additional documents that are related to the information
in this manual. Please refer to the following list.

Related Guides
l Class 5 SmartMotor™ Installation & Startup Guide

http://www.animatics.com/cl-5-install-startup-guide

l SmartMotor™ Developer's Guide

http://www.animatics.com/smartmotor-developers-guide

l SmartMotor™ System Best Practices

http://www.animatics.com/system-best-practices-application-note

Other Documents
l SmartMotor™ Product Certificate of Conformance

http://www.animatics.com/download/Declaration of Conformity.pdf

l SmartMotor™ UL Certification

http://www.animatics.com/download/MA_UL_online_listing.pdf

l SmartMotor Developer's Worksheet
(interactive tools to assist developer: Scale Factor Calculator, Status Words, CAN Port
Status, Serial Port Status, RMODE Decoder and Syntax Error Codes)

http://www.animatics.com/tools

l Moog Animatics Product Catalog, which is available on the Moog Animatics website

http://www.animatics.com/support/moog-animatics-catalog.html

Moog Animatics Class 5 CANopen Guide Rev. H

Page 18 of 233

http://ulstandards.ul.com/standards-catalog/
http://www.iso.org/iso/home/standards.htm
http://ec.europa.eu/growth/single-market/european-standards/harmonised-standards/index_en.htm
http://ec.europa.eu/growth/single-market/european-standards/harmonised-standards/index_en.htm
http://www.animatics.com/cl-5-install-startup-guide
http://www.animatics.com/smartmotor-developers-guide
http://www.animatics.com/system-best-practices-application-note
http://www.animatics.com/download/Declaration of Conformity.pdf
http://www.animatics.com/download/MA_UL_online_listing.pdf
http://www.animatics.com/tools
http://www.animatics.com/support/moog-animatics-catalog.html

Additional Resources

Additional Resources
The Moog Animatics website contains useful resources such as product information,
documentation, product support and more. Please refer to the following addresses:

l General company information:

http://www.animatics.com

l Product information:

http://www.animatics.com/products.html

l Product support (Downloads, How To videos, Forums, Knowledge Base, and FAQs):

http://www.animatics.com/support.html

l Sales and distributor information:

http://www.animatics.com/sales-offices.html

l Application ideas (including videos and sample programs):

http://www.animatics.com/applications.html

CANopen Resources
CANopen is a common standard maintained by CAN in Automation (CiA):

l CAN in Automation website:

http://www.can-cia.org/

l CAN in Automation website — CANopen description:

http://www.can-cia.org/index.php?id=canopen

Moog Animatics Class 5 CANopen Guide Rev. H

Page 19 of 233

http://www.animatics.com/
http://www.animatics.com/products.html
http://www.animatics.com/support.html
http://www.animatics.com/sales-offices.html
http://www.animatics.com/applications.html
http://www.can-cia.org/
http://www.can-cia.org/index.php?id=canopen

CANopen Overview

CANopen Overview
This chapter provides an overview of the CANopen communications protocol implementation
on the Moog Animatics SmartMotor.

CANopen Description 21

CAN (CAN Bus) 21

CANopen 21

PDO and SDO Communication 22

SDO 22

PDO 23

COB-ID Allocation 24

NMT States 26

NMT Control 27

NMT Summary 27

NMT State Machine Diagram 28

PDO Communications 28

Peer-to-Peer Communications 29

Synchronous Communications 29

Moog Animatics Class 5 CANopen Guide Rev. H

Page 20 of 233

CANopen Description

CANopen Description
CANopen is a standard that allows industrial devices to communicate over the CAN bus (the
CAN bus alone does not provide enough functionality for most industrial applications).

The terms CANopen, CAN and CAN bus are often used interchangeably in technical
conversations, but they are not the same. Therefore, it is important to understand their
differences, which are described in the next two sections.

CAN (CAN Bus)
CAN or CAN bus is a low-level communication system. It defines a set of electrical standards
(voltages, differential signaling method, impedance, etc.) as well as some very basic data
formatting. The data formatting permits up to eight bytes of data in a packet. This packet is
transmitted with an 11-bit identifier. There is no "to" or "from" field to indicate a specific
destination for a packet. A device can also transmit several different sets of data, each with a
unique identifier. The identifier essentially gives that data a unique meaning. However, that
meaning can depend entirely on the intent of the system designer.

Each device on the network can decide what data it wants to monitor. Typical CAN bus
hardware provides mechanisms to the software for filtering out specific identifiers. CAN also
provides features that detect errors to ensure data integrity.

When two devices attempt to transmit at the same time (which causes collisions), the device
sending data with a lower identifier will continue, while the other device will stop transmitting
and retry as soon as possible. This simple arbitration is reliable and efficient without
introducing unpredictable delays, which makes it suitable for industrial networks.

CAUTION: Two devices should never transmit with the same identifier. If that
occurs, then the situation cannot be resolved and will cause a network error.

CANopen
CANopen builds onto the basic CAN bus functionality. It also defines events driven by timers
and synchronization signals.

An address is assigned to each device on the network. This address allows a client-server
relationship to be established from a master to each device (SDO, NMT, etc.). This
relationship allows device configuration at startup so that process-specific data can be
exchanged later through PDO communications.

All data in a device is organized into a common list of available objects. This is called the
"object library" or "object dictionary". It allows the master to obtain some basic information
directly from the device such as range limits and descriptions.

Electronic Data Sheet (EDS) files provide details to PLCs and system integrators that describe
this organization:

l A structure is put into place to define basic data types.

l Profiles are defined for specific applications. For the SmartMotor, this means that
features common to motor control are defined, and specific data objects are assigned to
specific object numbers.

Moog Animatics Class 5 CANopen Guide Rev. H

Page 21 of 233

PDO and SDO Communication

PDO and SDO Communication
In CANopen, there are two different modes used for passing data: PDO and SDO. In both
forms of communication, data is accessed through the same object dictionary and
object-numbering scheme. The same list of objects (position target, velocity actual, status
word, control word, etc.) applies to both PDO and SDO communications. However, there are
some objects that are deliberately restricted and only accessed through SDO communication.
For specific object details, see Object Reference on page 92.

F

i

e

l

d

b

u

s

SmartMotor Motion

and Motor Control

SmartMotor User

Program

SmartMotor I/O

OBJECT DICTIONARY

SMARTMOTOR

Communications

Objects

Baud Rate

Etc.

CiA402 Motion

Objects

Velocity

Position

Etc.

SmartMotor-Speci!c

Objects

I/O

Command Interface

Etc.

SDO

PDO

PDO and SDO Communications

SDO
A Service Data Object (SDO) communication is intended for initial setup and occasional access
to objects that are seldom needed. Also, some CANopen masters may use SDO
communications if they don't intend to configure any PDO communications.

l The SmartMotor provides access to SDO communications in the Pre-Operational and
Operational NMT states.

l Many PLCs only use access through SDO during a setup phase of operation, and they do
so through pre-scripted setup actions.

SDO communications have more overhead per communication due to the following reasons:

l The full object and subindex value are encoded in each SDO communication. This allows
easy access to any object, but it limits the amount of payload space available for data in
each packet.

Moog Animatics Class 5 CANopen Guide Rev. H

Page 22 of 233

PDO

l SDO communications also expect a response from the slave back to the master. Both
read and write operations confirm by either sending the requested data (read) or
confirming that a command was received (write).

SDO communications have the ability to send lengthy amounts of data. For example, string
data types are best sent through SDO. In these cases, the data is split up and sent using
several CAN bus packets. The recipient of the data will reassemble the CAN bus packets and
process the object normally.

PDO
A Process Data Object (PDO) communication allows for minimal overhead when transmitting
frequently-used data. Typically, this is used for information that is critical to an ongoing
process, which could include the speed, position, control word, etc.

The PDO communication does not specifically encode the object and sub-object information in
each packet. This information is agreed on between the master and the slave before entering
the Operational state. For further information, see PDO Mapping on page 71.

The following is a list of considerations for using and configuring PDO communication.

l Not all objects are suitable for access through PDO communication. Therefore, many
objects are disabled from PDO access.

l Some objects may be overwhelmed if they are only intended to be called intentionally.
For example, object 2500h should only be written to occasionally and the response must
be examined by the host.

l Data types that are too large to fit in a PDO communication will not work.

l PDO communications do not give a response when received. This makes each
transaction more efficient but also does not provide feedback (for example, if a value is
out of range).

Moog Animatics Class 5 CANopen Guide Rev. H

Page 23 of 233

COB-ID Allocation

l To facilitate user programs in the SmartMotor, the arrival of PDOs are indicated by a
status bit in Status Word 10, see Object 2304h: Motor Status on page 159. This feature
allows user programs to handle the arrival of data as an event. The user program
should clear these status bits with a Z(10,bit) command, where bit is values 1–5, after
the event handler part of the user program is executed, for example:

WHILE 1
IF B(10,1)==1

Z(10,1) ' Clear event flag
PRINT("Rx PDO 1",#13)

ENDIF
IF B(10,2)==1

Z(10,2) ' Clear event flag
PRINT("Rx PDO 2",#13)

ENDIF
IF B(10,3)==1

Z(10,3) ' Clear event flag
PRINT("Rx PDO 3",#13)

ENDIF
IF B(10,4)==1

Z(10,4) ' Clear event flag
PRINT("Rx PDO 4",#13)

ENDIF
IF B(10,5)==1

Z(10,5) ' Clear event flag
PRINT("Rx PDO 5",#13)

ENDIF
LOOP
END

NOTE: Status Word 10, bit 0 cannot be cleared—it is an indication of the
master status, see Network Control Commands on page 83. Also, the ZS
command will have no effect on these bits.

For more details on the B, Z and ZS commands, see the SmartMotor Developer's Guide.

COB-ID Allocation
A Communication Object Identifier (COB-ID) is the unique identifier assigned to a CAN packet.
CAN packets do not have a specific destination or source identifier. The sender of a packet,
whether a master or slave, will attach an identifier depending on the purpose of the packet. In
many cases, the COB-ID is a combination of the node ID and a function code. In other cases,
the COB-ID is assigned to a special purpose and does not specifically include a node ID. Many
COB-IDs are permanently assigned or reserved.

For example, the SDO communication channel between the master and a particular motor has
a COB-ID for master-to-slave packets, and another COB-ID for slave-to-master packets.

l Master-to-motor SDO COB-ID: 1536 (decimal) + node ID

l Motor-to-master SDO COB-ID: 1408 (decimal) + node ID

While it is possible to reassign many COB-IDs, it is not recommended. The "default connection
set" is a common way to assign these COB-IDs to a particular function and is adequate (and
recommended) for most purposes. Typically, the term "default connection set" is used to

Moog Animatics Class 5 CANopen Guide Rev. H

Page 24 of 233

COB-ID Allocation

describe a scheme where receive and transmit PDO numbers 1 through 4 are allocated
sequentially for the 127 nodes.

NOTE: While recommended, it is not a requirement to follow the default connection
set.

The sync packet is an example where the node ID is not relevant to the COB-ID. In other
words, it is a COB-ID that is not constructed from the node ID of the slave (in contrast with
the SDO communications, described above, where the node ID is included as part of the COB-
ID). The sync packet provides a network pulse that is used by the master and all nodes to
coordinate activity. The sync producer simply sends the COB-ID of the sync packet, and its
own node ID is not part of the sync's COB-ID.

The only recommended exception to using the default connection set is in the assignment of
COB-IDs to PDOs. Note that when configuring PDO communications, there are some choices to
make in the assignment of COB-IDs to specific PDOs. There are enough available COB-IDs to
assign at least eight to each of 127 nodes. The following are some typical reasons why a
network may require a change to the default assignment of COB-IDs to PDOs:

1. If a device needs PDOs other than PDO numbers 1 through 4, then the higher-numbered
PDOs must be assigned COB-IDs. For instance, the SmartMotor has a PDO number of 5.
However, the default connection set does not provide enough COB-IDs for PDO numbers
above 4.

2. By carefully assigning COB-IDs to PDOs, it is possible to have the transmit PDO of one
motor be received by other motors. This is accomplished by assigning the same COB-ID
to one transmitting motor and one or more receiving motors. This does not follow the
default connection set because a COB-ID that would typically be a transmit PDO fills the
receiving role in other motors.

3. Lower-numbered COB-IDs have a higher priority in the event of network congestion. It
may be important for an application to assign COB-IDs to a particular PDO on a
particular node that are lower than those provided by the default connection set.

The following table shows the assigned COB-ID ranges.

COB-ID

Decimal Hex Description

0 0 NMT control

1 1 Reserved

128 80 Sync event

129–255 81–FF Emergency

256 100 Timestamp

257–384 101–180 Reserved

385–1407 181–57F Available for assignment to PDO

1409–1535 581–5FF SDO Transmit (slave to master)

1537–1663 601–67F SDO Receive (master to slave)

1760 6E0 Reserved

1793–1919 701–77F NMT error control

2020–2047 780–7FF Reserved

2047 7FF (Largest possible COB-ID) Reserved

Moog Animatics Class 5 CANopen Guide Rev. H

Page 25 of 233

NMT States

The following table shows the default connection set for PDO communications based on the
CANopen standards.

NOTE: These are recommendations, but they do not need to be strictly followed.

COB-ID

Decimal Hex Description

385–511 181–1FF Transmit PDO 1 of nodes 1–127

513–639 201–27F Receive PDO 1 of nodes 1–127

641–767 281–2FF Transmit PDO 2 of nodes 1–127

769–895 301–37F Receive PDO 2 of nodes 1–127

897–1023 381–3FF Transmit PDO 3 of nodes 1–127

1025–1151 401–47F Receive PDO 3 of nodes 1–127

1153–1279 481–4FF Transmit PDO 4 of nodes 1–127

1281–1407 501–57F Receive PDO 4 of nodes 1–127

NMT States
The network management state (NMT) is used to control the general communication functions
in the CANopen devices on the network.

The primary states that are used are Pre-Operational and Operational; there are also the
Initialization and Stopped states:

l Pre-Operational state allows SDO reads/writes to the motor but prevents PDO
communications

l Operational state allows all SDO and PDO communications

l Initialization state starts up the SmartMotor and sets the internal parameters

l Stopped state blocks all commands except the NMT command

The Initialization state is typically not of concern because the motor will automatically
transition to the Pre-Operational state. During this transition, the motor will send a startup
message. This startup message uses the same COB-ID as a heartbeat message, but it is a
one-time event with a data value of 0.

It is also possible to restart the network stack of the motor or to reboot the motor entirely
through the NMT control. These are considered initialization states that will return to the
Pre-Operational state automatically.

The Stopped state can be used to block commands except the NMT command itself. This
means that SDO and PDO access to objects ceases to function. The SYNC, TIME, and EMCY
services are also stopped for devices that support these services.

If the heartbeat function of the motor is activated, then the motor will report the current NMT
state with each heartbeat message.

Moog Animatics Class 5 CANopen Guide Rev. H

Page 26 of 233

NMT Control

NMT Control
NOTE: See associated command when motor is sending NMT commands: NMT
(address, command code) on page 85.

The current NMT state is set when the NMT master sends a special packet with a COB-ID of 0.
This packet contains two individual bytes of data: the first byte indicates the commanded
state that the addressed devices will switch to; the second byte addresses the nodes, either
globally or individually.

Byte 1 Value
(command code,
argument 2 of
NMT command)

Byte 1 Command

80h (128 dec) Go to Pre-Operational state

01h (1 dec) Go to Operational state

02h (2 dec) Go to Stopped state

82h (130 dec) Reset communications (clear objects in the 1xxxh range)

81h (129 dec) Reset application (resets the SmartMotor)

Byte 2 Value
(address, argu-
ment 1 of NMT
command)

Byte 2 Addressed Devices

0h (0 dec) All devices on network

01–7Fh
(1-127 dec)

Change the state of only the specified SmartMotor

NMT Summary
The following table provides a summary of the NMT states. Also, see the NMT State Machine
diagram in the next section. The SmartMotor =CAN and RCAN commands can be used to
assign/report the value of the NMT state, control word (object 6040h) and status word (object
6041h). For details, see =CAN, RCAN on page 80.

NMT State
NMT
Cmnd.
code

Reported
Value

(heartbeat)

SDO
funct'l

PDO
funct'l

Auto-
transition to: Effect

Initialization
(power up)

N/A N/A No No Pre-Operational Sends startup
message

Initialization
(Reset
communication)

130 N/A No No Pre-Operational Clears objects in
the 1xxxh range

Sends startup
message

Moog Animatics Class 5 CANopen Guide Rev. H

Page 27 of 233

NMT State Machine Diagram

NMT State
NMT
Cmnd.
code

Reported
Value

(heartbeat)

SDO
funct'l

PDO
funct'l

Auto-
transition to: Effect

Initialization
(Reset
Application)

129 N/A No No Pre-Operational Reboots the
SmartMotor

Sends startup
message

Pre-Operational 128 127 Yes No -

Operational 1 5 Yes Yes -

Stopped 2 4 No No -

NMT State Machine Diagram
The following diagram shows the relationship and interaction between the possible NMT
states.

Initialization State

Pre-Operational

State

Operational State

Stopped State

Startup ID

(Boot-up Message)

NMT State Machine

For more details on CANopen network management, see the CAN in Automation (CiA) website
at:

http://www.can-cia.org/index.php?id=155

PDO Communications
There are two methods of PDO communications: peer-to-peer (versus master-to-slave), and
synchronous (versus asynchronous). These communication methods are described in the
following sections. Note that these communications methods are not mutually exclusive. For
example, peer-to-peer means that motor 1 and send a PDO and motor 2 can receive that
same PDO. This can be done through either of the following methods:

l Synchronous: Motor 1 transmits when a sync packet is seen

l Asynchronous: Motor 1 transmits based on its own internal timer

Moog Animatics Class 5 CANopen Guide Rev. H

Page 28 of 233

http://www.can-cia.org/index.php?id=155

Peer-to-Peer Communications

Peer-to-Peer Communications
An advantage to the peer-to-peer method of PDO communication is that any node can be a
recipient of any PDO. This allows for data to flow peer-to-peer rather than always going to the
master. It also allows for broadcasting to multiple nodes (for example, there may be an I/O
input device on the CANopen network that all devices wish to monitor for a button press).

The CANopen master must configure this peer-to-peer relationship. However, once it is
configured and the network is in the Operational state, the process will continue without
constant intervention from the master.

To establish a peer-to-peer relationship, one node will transmit a data object using a
particular COB-ID. Any device that wishes to receive this information should allocate this
COB-ID to a receive PDO and map that PDO to the desired object to accept the data. For
details about how PDOs are mapped, see PDO Mapping on page 71 and COB-ID Allocation on
page 24.

Synchronous Communications
PDOs may be configured to transmit from a node's own internal timer, or they may be
transmitted based on the sync event on the network. The sync event is simply a special CAN
frame produced by the node or master that is assigned as the sync producer. PDO Mapping on
page 71 describes the details for configuring these two modes of PDO transmission.

When the sync method is chosen, it is possible to transmit on every sync message, or to sub-
divide the transmission rate by up to 240. In other words, transmission can be set to occur on
every sync, every other sync, every third sync, and so on... up to every 240th sync.

Moog Animatics Class 5 CANopen Guide Rev. H

Page 29 of 233

Supported Features

Supported Features
This chapter provides information on the supported and unsupported features of the CANopen
specification.

Supported 31

Motion Modes 31

NMT State Machine Master 31

PDO Transmit on Event 31

PDO Transmit on Timer Only 32

PDO Transmit on Sync 32

Dynamic PDO Mapping 32

Heartbeat Producer 32

Sync Producer 32

Not Supported 33

Emergency Messages 33

Saving Parameters 33

Heartbeat Consumer 33

MPDOCommunications 33

CAN Bus Bit Rate 33

PDO Transmit on RTR (Remote frames) 33

Node Guarding 33

TIME Service 33

Sync Start 33

Moog Animatics Class 5 CANopen Guide Rev. H

Page 30 of 233

Supported

Supported
This section describes the CANopen features that are supported by the SmartMotor.

Motion Modes
The following motion modes are supported:

l Profile Position (PP, mode of operation: 1) — behaves like the SmartMotor MP mode;
supports "single setpoint" and "set of setpoints" modes

l Profile Velocity (PV, mode of operation: 3) — behaves like the SmartMotor MV mode

l Interpolation (IP, mode of operation: 7) — behaves like the SmartMotor MD mode

l Torque (TQ, mode of operation: 4) — behaves like the SmartMotor MT mode

l Homing (HM mode, mode of operation: 6) — only methods 1, 2, 17, 18, 33, 34 and 35
are supported—all others are not supported; homing offset, homing speeds and homing
acceleration are supported

l Follow with Ratio (electronic gearing) & Cam (electronic camming): Allows one or more
SmartMotors to receive data from an encoder on the CANopen bus, and then rotate at a
specific ratio relative to the input encoder. Includes objects to support gearing over
CANopen, such as MFMUL, MFDIV, MFA and MFD, and to select follow or cam modes of
operation. Related objects are: 2207h, 2208h, 2209h, and 220Ah-220Dh.

The Supported Drive Modes object (6502h) is used to report the modes of operation that are
available. The Modes of Operation object (6060h) is used to request the desired mode of
operation before setting the Control Word object (6040h).

NMT State Machine Master
Required for mastering I/O expansion across CANopen. This expanded I/O capability allows
the SmartMotor to interface with standard CiA 301 CANopen devices and function as the I/O
device CAN bus master (i.e., no external bus master needed). See the overview of this
capability in I/O Device CAN Bus Master on page 11.

It includes capability to support PDO operation as follows:

l NMT control

l 8, 16, and 32-bit data objects that can be mapped to PDOs

l Status word indication of Rx PDO data arrival

Related objects are: 2220h, 2221h and 2204h. For details, see Object Reference on page 92.

Related commands are: NMT, SDORD, SDOWR, CANCTL, and B/RB. For details, see the
descriptions in this guide and in the SmartMotor Developer's Guide.

Example user programs are shown in the SmartMotor Developer's Guide, Part 3: Examples.

PDO Transmit on Event
Process Data Objects (PDOs) can be configured to transmit on a change of value within the
motor (Transmission type: 255). Transmission type 255 also transmits on the transmit timer

Moog Animatics Class 5 CANopen Guide Rev. H

Page 31 of 233

PDO Transmit on Timer Only

event configured in the PDO's corresponding communications parameter object. The transmit
timer provides a minimum rate at which the data is transmitted.

l The transmission type is set using subindex 2 of objects 1800h, 1801h, 1802h, 1803h
and 1804h.

l The transmission timer is set using subindex 5 of objects 1800h, 1801h, 1802h, 1803h
and 1804h.

PDO Transmit on Timer Only
Transmit PDOs can be configured to transmit on a timer using a transmission type setting of
254.

l The transmission type is set using subindex 2 of objects 1800h, 1801h, 1802h, 1803h
and 1804h.

l The transmission timer is set using subindex 5 of objects 1800h, 1801h, 1802h, 1803h
and 1804h.

PDO Transmit on Sync
Transmit PDOs can be configured to transmit in response to a sync packet. Transmit types 1-
240 in the transmission type setting are used to configure this. The value of the transmission
type controls how often the transmit PDO is sent in response to a sync (e.g., transmit type = 1
is sent in every sync packet; transmit type = 240 is sent in every 240th sync packet).

The transmission type is set using subindex 2 of objects 1800h, 1801h, 1802h, 1803 and
1804h.

Dynamic PDO Mapping
There are objects used to simultaneously configure (map) up to five Receive PDOs and five
Transmit PDOs. These mappings are dynamic — any object with "PDO mappable" in its
description can be mapped to a PDO through the standard CANopen mapping procedure.

Dynamic mapping of objects to PDO is configured using objects 1600h, 1601h, 1602h, 1603h,
1604h, 1A00h, 1A01h, 1A02, 1A03h and 1A04h. For details, see PDO Mapping on page 71.

Heartbeat Producer
The motor can be configured to transmit a heartbeat at a configurable rate. For details, see
Object 1017h: Producer Heartbeat Time on page 109.

Sync Producer
The SmartMotor can produce sync messages. This requires setting the Communication Cycle
Period object (1006h) and the COB-ID SYNC object (1005h). There is a specific order to
configuring these objects, and object 1005h requires an additional bit setting. Therefore, it is
important to review the descriptions of both objects. For details, see Object 1005h: COB-ID
SYNC on page 101 and Object 1006h: Communication Cycle Period on page 103.

Moog Animatics Class 5 CANopen Guide Rev. H

Page 32 of 233

Not Supported

Not Supported
This section describes the CANopen features that are not supported by the SmartMotor.

Emergency Messages
Emergency (EMCY) object messages are not produced or consumed by the SmartMotor. The
associated objects, 1014h and 1015h, do not exist.

Saving Parameters
The SmartMotor does not support parameter data saving. Objects 1010h and 1011h are not
implemented.

Heartbeat Consumer
The SmartMotor does not consume heartbeat messages. Therefore, it will not take action on
the presence or absence of any heartbeat messages. However, the SmartMotor can be a
heartbeat producer. For details, see Object 1017h: Producer Heartbeat Time on page 109.

MPDO Communications
The SmartMotor does not support the multiplexed-PDO (MPDO) method of communication.
Ordinary transmit and receive PDOs are supported.

CAN Bus Bit Rate
The CAN bus bit rate of 10000 bits/sec is not supported.

PDO Transmit on RTR (Remote frames)
PDO Transmit types 252 and 253 are not supported. Remote (RTR) frames are not supported.

Node Guarding
Node Guarding is not supported.

TIME Service
TIME service is not supported.

Sync Start
Sync Start value is not present or supported. This refers specifically to subindex 6 of the
Transmit PDO Communication Parameter objects 1800h–1804h.

Moog Animatics Class 5 CANopen Guide Rev. H

Page 33 of 233

Connections, Wiring and Status LEDs

Connections, Wiring and Status LEDs
This chapter provides information on the SmartMotor connectors, a multidrop cable diagram,
and a description of the SmartMotor status LEDs.

Connectors and Pinouts 35

D-Style Motor Connectors and Pinouts 35

D-Style Motors: CDS Option Schematic 35

CDS on the DA-15 Connector 35

CDS on the 7W2 Connector (CDS7) 36

M-Style Motor Connectors and Pinouts 39

Cable Diagram 39

CAN Multidrop Cable Diagram 40

Bus Termination 40

Maximum Bus Length 41

Status LEDs 42

Other Communications with the Motor 43

Moog Animatics Class 5 CANopen Guide Rev. H

Page 34 of 233

Connectors and Pinouts

Connectors and Pinouts

D-Style Motor Connectors and Pinouts
The following figure provides a brief overview of the connectors and pinouts available on the
D-style SmartMotors. For details, see the Class 5 SmartMotor™ Installation and Startup
Guide.

PIN

1

2

3

4

5

NC

+V (NC except DeviceNet)

-V (Isolated GND)

CAN-H

CAN-L

DESCRIPTION

5-Pin CAN (female)

1

2

3

4

5

6

7

8

9

10

11

12

I/O-16 GP

I/O-17 GP

I/O-18 GP

I/O-19 GP

I/O-20 GP

I/O-21 GP

I/O-22 GP

I/O-23 GP

I/O-24 GP

I/O-25 GP

+24VDC Input

GND I/O

PIN DESCRIPTION

12-Pin Expanded I/O Connector
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

I/O-0

I/O-1

I/O-2

I/O-3

I/O-4

I/O-5

I/O-6

Encoder A Out

Encoder B Out

RS-232 Transmit

RS-232 Receive

+5VDC Out

Ground

Power Ground

Power

PIN DESCRIPTION

7-Pin Combo D-Sub Power & I/O

A1 A2
1 2

3 4 5

A1

A2

1

2

3

4

5

+20V to +48V DC

Power Ground

I/O-6

+5VDC Out

RS-232 Transmit

RS-232 Receive

RS-232 Ground

PIN DESCRIPTION

15-Pin D-Sub I/O

Trajectory LED

PWR/Servo LED

CAN Fault LED

CAN Status LED

 15 14 13 12 11 10 9

 8 7 6 5 4 3 2 1

NOTE: The DE power option is recommended. For details, see the Class 5
SmartMotor™ Installation and Startup Guide.

D-Style Motors: CDS Option Schematic
This section provides schematics for wiring a D-styleSmartMotor equipped with the CDS CAN
connection option. This option can be used for Combitronic communications. For details on
Combitronic communications, see Combitronic Communications in the SmartMotor™
Developer's Guide. The option also allows the integrated brake option to be used with CAN,
which is useful for many vertical-axis applications.

NOTE: The CDS Option is available only on specially equipped D-styleSmartMotors.
Contact Moog Animatics for details.

CDS on the DA-15 Connector

A special version of the D-styleSmartMotor with the CDS CAN connector option allows CAN
bus network wiring through the DA-15 connector (15-pin D-sub I/O connector shown in the
following figure). This is an advantage when the M-style CAN connector is not desired. The D-
style motor with the CDS CAN connection option can be used as the terminating node. To
enable this, a 120 ohm terminating resistor (shunt) must be placed across pins 10 and 11. For
details, see the following figure.

Moog Animatics Class 5 CANopen Guide Rev. H

Page 35 of 233

CDS on the 7W2 Connector (CDS7)

NOTE: Terminating resistors (shunts) must always be used at both ends of a CAN
bus network.

Motor as Terminating Node

NOTES: A terminating resistor (shunt) is required at each end of the bus.

 Bus must be multi-drop as shown, not a star network.

 24V CAN bus power connection is not required at the motor.

I/O Connector

Pin Numbers

Trajectory
LED (Bt)

Power/Servo
LED

120 Ohm Terminator Shield Drain

10 CAN Low

 15 14 13 12 11 10 9

 8 7 6 5 4 3 2 1

11 CAN High

1
5

-p
in

 D
-s

u
b

 M
a

le

15-pin D-sub Male 15-pin D-sub Male 15-pin D-sub Male

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15

1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5 1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5 1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

10

11

CAN Low

CAN High

PIN DESCRIPTION

All other pins are as

previously shown.

10 CAN Low

11 CAN High

13 Shield Drain

120 Ohm

Terminator

120 Ohm

Terminator

Schematic for CDS Option, D-Style SmartMotor Used as Terminating Node

CDS on the 7W2 Connector (CDS7)

Alternatively, the CDS7 option on the D-style SmartMotor now allows CDS to be wired through
pins 1 and 2 of the 7-pin D-Sub (7W2) connector as shown in the following figure. The wiring is
accomplished through the use of a single Add-A-Motor cable (PN: CBLSMCDS) that carries
Power, RS-232, and CAN bus to the next motor in the chain. This method allows pins 10 and 11
on the 15-pin D-sub connector to be used as an easy terminating point on the last motor by
simply placing a 120 Ohm terminating resistor (shunt) across those pins OR installing the
Pass-Thru Terminator (PN: CBLSM-TR120) on that connector.

This design not only greatly simplifies motor installation, but also does the same for CAN bus
addressing. With CDS7, the SmartMotor is the first and only single-cable, point-to-point
integrated motor to have both motor-to-motor full communications and control capability, and
only single-cable, point-to-point for both power and communications in general.

As a result:

l When you order the D-series CDS7 SmartMotors and new Add-A-Motor cables, you get
prewired, instant, full-network capability, and those networked motors are auto-
detectable directly from SMI.

l This allows for auto-addressing and ease of reconnection at the next power up.

Moog Animatics Class 5 CANopen Guide Rev. H

Page 36 of 233

CDS on the 7W2 Connector (CDS7)

l Unlike competitive CANopen devices, the CDS7 SmartMotors do not require single-node
power up to set addresses. You can power up all at once, have SMI detect them and set
all motor CAN bus addresses in a single line of code. For details, see Detecting and
Addressing the SmartMotors in the Class 5 SmartMotor Installation and Startup Guide.

CDS7 is fully backward compatible with the wiring method described in the previous section.
Therefore, all -CDS7 option SmartMotors can be wired either through the D-sub connector or
the 7W2 connector, and there is no change in motor part numbers for the 7W2 method. The
only part change is the cabling used to connect the motors - refer to the figures, descriptions
and part numbers later in this section.

When the SmartMotor is a terminating node on the CAN bus, the 120 Ohm terminating resistor
(shunt) must be wired to pins 10 and 11 of the 15-pin D-sub connector. A 120 Ohm terminating
resistor (shunt) is also required at the beginning of the CAN bus. See the following figures.

For further convenience, a 15-pin pass-through D-sub connector (Pass-Thru Terminator, PN:
CBLSM-TR120) is available that contains a built-in 120 Ohm terminating resistor (shunt).
When a SmartMotor is the terminating node and the 7W2 wiring method is used (described
previously), you can simply install the pass-through connector on the SmartMotor's 15-pin D-
sub connector to serve as the terminator.

Motor as

Terminating Node

NOTES: A terminating resistor (shunt) or pass-thru terminator is required at each end of the bus.

 Bus must be multi-drop as shown, not a star network.

 24V CAN bus power connection is not required at the motor.

Trajectory
LED (Bt)

Power/Servo
LED

7W2 D-sub Male 7W2 D-sub Male 7W2 D-sub Male

1
5

-p
in

 D
-s

u
b

 M
a

le

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15

1 2 3 4 5

1 CAN Low

2 CAN High

5 Shield Drain

 11 10
 9

A1 A2
1 2

3 4 5

1 2 3 4 5 1 2 3 4 5

A1 A2 A1 A2 A1 A2

120 Ohm Terminator

at Bus Master

(PLC, Host, HMI)

7W2 D-sub Conn.

Pin Numbers

1

2

CAN Low

CAN High

PIN DESCRIPTION

All other pins are as previously

shown. See the D-Style Con-

nector Pinouts table later in

this guide for full details.

120 Ohm Terminator
 15 14 13 12 11 10 9

 8 7 6 5 4 3 2 1

15-Pin D-sub

Connector

10

11

CAN Low

CAN High

PIN DESCRIPTION

All other pins are as previously

shown. See the D-Style Con-

nector Pinouts table later in

this guide for full details.

15-pin D-sub Male

1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

CAN Low

CAN High

CAN Low

CAN High

OR

Incoming CAN on

15-pin connector

(NO incoming CAN

leads on the 7W2)

Incoming CAN on

7W2 connector

120 Ohm

Terminator

10

11

When motor is an end

node on CAN bus, install

this on the 15-pin D-sub:

OR

Pass-Thru

Terminator,

PN: CBLSM-TR120

120 Ohm

Terminator

Moog Animatics Class 5 CANopen Guide Rev. H

Page 37 of 233

CDS on the 7W2 Connector (CDS7)

For the above methods, the incoming CAN bus signal is connected to the 7W2 connector OR
the 15-pin connector, and the Class 5 CDS Add-A-Motor cable (PN: CBLSMCDS-xM) will
automatically provide CAN bus, RS-232 and power wiring in one cable between motors.

The following figure shows how factory cables are used to attach the incoming CAN bus signal
to the 15-pin connector, and incoming power and RS-232 communications to the 7W2
connector.

CBLSMCDS-xM

NOTES: A terminating resistor or pass-thru terminator is required at each end of the CAN bus.

Bus must be multi-drop as shown, not a star network. 24V CAN bus power connection is not required at the motor.

120 Ohm

Terminator

10

11

When motor is an end

node on CAN bus, install

this on the 15-pin D-sub:

Note BLUE connectors

that differentiate the

CDS7 cables from

standard Add-A-Motor

cables.

120 Ohm

Terminator

Incoming CAN on

15-Pin Connector

There must be NO incoming CAN wires

on the 7W2 connector.

Incoming RS-232

Incoming Power

CBLSM1-xM

CBLIO5V-xM

OR

Pass-Thru

Terminator,

PN: CBLSM-TR120

Refer to the following tables for part numbers and cable lengths.

CDS7
Cable PN

Length
(Meters)

Power/Com
Cable PN

Length
(Meters)

CBLSMCDS-0.3M 0.3 CBLSM1-xM 3-10

CBLSMCDS-0.9M 0.9 CBLIO5V-xM 3-10

CBLSMCDS-3.0M 3.0

CBLSMCDS-7.5M 7.5

CBLSM-TR120 Pass-thru
terminator

CAUTION: As noted by the BLUE con-
nectors, these are NOT the same as
the standard Add-A-Motor cables and
they are NOT interchangeable.

See the cable datasheets on the website or consult the factory for the schematic diagrams.

Moog Animatics Class 5 CANopen Guide Rev. H

Page 38 of 233

M-Style Motor Connectors and Pinouts

M-Style Motor Connectors and Pinouts
The following figure provides a brief overview of the connectors and pinouts available on the
M-style SmartMotors. For details, see the Class 5 SmartMotor™ Installation and Startup
Guide.

PIN

1

2

3

4

5

+24VDC Out

I/O-3 or -Limit

GND-Common

I/O-2 or +Limit

I/O-10

DESCRIPTION

LIMIT INPUTS

PIN

1

2

3

4

5

NC

+V (NC except DeviceNet)

-V (Unisolated Ground)

CAN-H

CAN-L

DESCRIPTION

CANOPEN

1

2

3

4

5

6

7

8

9

10

11

12

I/O-0

I/O-1

I/O-4

I/O-5

I/O-6

I/O-7

I/O-8

I/O-9

Not Fault Out

Drive Enable In

+24VDC Out

GND-Common

PIN

I/Os

1

2

3

4

5

6

7

8

GND-Common

RS-485B CH0

RS-485A CH0

ENC A+ (In/Out)

ENC B- (In/Out)

ENC A- (In/Out)

+5VDC Out

ENC B+ (In/Out)

PIN DESCRIPTION

COMMUNICATION

1

2

3

4

Control Power In 24Vmax

Chassis GND/Earth

GND-Common

Amplifier Power 48Vmax

PIN DESCRIPTION

POWER INPUT

RS-485 serial communication uses a
voltage di�erential signal. Appropriate
terminating resistors should be included
on the RS-485 network to ensure reliable
performance.

DESCRIPTION

CANOPEN
RUN LED

12-Pin I/O

4-Pin Power Input

8-Pin

COM Encoder Bus

5-Pin CANopen

(female is standard)
5-Pin

Limit Inputs

CANOPEN
ERROR LED

TRAJECTORY
LED

SERVO-AMPLIFIER
LED

Cable Diagram
CAN bus wiring is most reliable when a straight bus is used (see the following figure).

Common problems with CAN bus wiring are often traced to branches or star configurations.
These configurations often create multipath signal reflections that cause communication
errors.

CAUTION: If a branch is absolutely necessary due to wiring constraints, it is
the responsibility of the system designer to test and prove the layout is not
causing communication errors. Moog Animatics cannot ensure the success of
branched layouts.

The following figure shows a straight network with no branches. The short drop to each motor
is acceptable. These drops from the Y connector to the motor should be 0.3 meters or less.

CAUTION: If drops from the Y connecter to the motor need to exceed 0.3
meters, it is up to the system designer to test and prove the additional drop
length is not causing communication errors. Moog Animatics cannot ensure the
success of longer drops.

The wire length between any two motors should be at least 0.1 meter, including the drop
length. For details, see Maximum Bus Length on page 41.

Moog Animatics Class 5 CANopen Guide Rev. H

Page 39 of 233

CAN Multidrop Cable Diagram

CAN Multidrop Cable Diagram

CAN Bus

Other CANopen device:

- I/O block,

- Encoder,

- etc.

CANopen Master*

- PC,

- PLC,

- etc.

Terminator

Terminator*

*Master may have termination option; see master’s documentation for details.

Moog Animatics

SmartMotor

Moog Animatics

SmartMotor

Bus Termination
Proper termination is critical for successful network communications. There must be two
terminators (120 Ohms each), and they must be located at the two ends of the network.
Because the network is a straight line, there are exactly two ends of the network to place the
terminators.

CAUTION: Using less than two terminators is not acceptable; using more than
two terminators is not acceptable.

In the event that the master device specifically provides a terminating resistor, then that may
be used instead of the terminator plug. However, the master must be at the end of the
network in that case; it cannot be in the middle.

Moog Animatics Class 5 CANopen Guide Rev. H

Page 40 of 233

Maximum Bus Length

Maximum Bus Length
The following table shows the transmission bit rates and corresponding maximum bus lengths.
The bus length is the calculated maximum distance of the straight bus from one terminated
end to the other terminated end.

Bit rate
(bits/second)

Bus length
(meters)

1000000 25

800000 50

500000 100

250000 250

125000 500

50000 1000

20000 2500

NOTE: Bus lengths exceeding 200 meters may have additional requirements such
as the use of repeaters or optocouplers. For details, see the CiA 301 specifications.

Moog Animatics Class 5 CANopen Guide Rev. H

Page 41 of 233

Status LEDs

Status LEDs
The Status LEDs provide the same functionality for the D-style and M-style (including
IP-sealed) SmartMotors.

P3 (CANopen option)

LED Status on Power-up:

• With no program and the travel limit inputs are low:

LED 0 will be solid red indicating the motor is in a fault state due to travel limit fault.

LED 1 will be off.

• With no program and the travel limit inputs are high:

LED 0 will be solid red for 500 milliseconds and then begin flashing green.

LED 1 will be off.

• With a program that disables only travel limits and nothing else:

LED 0 will be solid red for 500 milliseconds and then begin flashing green.

LED 1 will be off.

P1 (Power Input)

LED 0

LED 1

P2 (COM

Encoder Bus)

P3

(I/O Connector)

P4

(Limit Inputs)

P5

(CANopen)
LED 3

LED 2

LED 0: Drive Status Indicator

Off No power

Solid green Drive on

Flashing green Drive off

Flashing red Watchdog fault

Solid red Major fault

Alt. red/green In boot load; needs firmware

LED 1: Trajectory Status Indicator

Off Not busy

Solid green Drive on, trajectory in progress

LED 2: CAN Bus Network Fault (Red LED)

Off No error

Single Flash At least one error

exceeded limit

Double Flash Heartbeat or guard error

Solid Busy off state

LED 3: CAN Bus Network Status (Green LED)

Blinking Pre-operational state

 (during boot-up)

Solid Normal operation

Single Device is in stopped state

NOTE: D-style motors with the CDS CAN connector option use LED 1 to indicate a CAN error. Because this LED also

indicates the trajectory status, it will alternate red/green colors if a CAN error occurs while a trajectory is in progress.

Condition

Bt = 0, CAN bus OK

Bt = 1, CAN bus OK

Indication

Trajectory LED = Off

Trajectory LED = Green

Bt refers to Busy Trajectory

status bit. When the motor is

actively pursuing a trajectory,

that bit will be set to 1.
Bt = 0, CAN bus fault

Bt = 1, CAN bus fault

Trajectory LED = Flashing red

Trajectory LED = Alternating red/green

D-Style Motor CDS Option LED 1 CAN Error Indication:

Moog Animatics Class 5 CANopen Guide Rev. H

Page 42 of 233

Other Communications with the Motor

Other Communications with the Motor
In addition to communicating with the SmartMotor as a CANopen device, you can also
communicate with it directly from a PC or laptop. This is useful if you need a "back door" into
the motor, for example, to modify the stored user program or download a new one, or for
troubleshooting purposes.

For information on connecting the SmartMotor directly to a PC, see the Getting Started
chapter in the Class 5 SmartMotor™ Installation and Startup Guide.

Moog Animatics Class 5 CANopen Guide Rev. H

Page 43 of 233

Manufacturer-Specific Objects

Manufacturer-Specific Objects
This chapter provides details on manufacturer-specific objects.

I/O 45

User Variables 45

Calling Subroutines 47

Command Interface (Object 2500h) 48

Command Interface 48

Program Upload/Download 49

Upload from Motor 49

Download to Motor 49

Moog Animatics Class 5 CANopen Guide Rev. H

Page 44 of 233

I/O

I/O
The CiA 402 motion profile provides limited access to the onboard I/O of the SmartMotor.
However, there are other manufacturer-specific objects that provide more I/O control.

As part of the CiA 402 motion profile, objects 60FDh and 60FEh are provided. For details, see
Object 60FDh: Digital Inputs on page 224 and Object 60FEh: Digital Outputs on page 226.

For the D-style motor, object 2100h is highly specific to the multiplexed role of the seven I/O
pins. This function is not supported on the M-style motor. For more details, see Object 2100h:
Port Configuration on page 136.

For general access to individual I/O pins, the Bit I/O object (2101h) offers a more specific way
to send commands. This feature works on the M-style and D-style motors. It can be used to
disable the limit inputs if desired. For more details, see Object 2101h: Bit IO on page 137.

NOTE: The limit-switch inputs for all SmartMotors must be satisfied before motion
is allowed. The inputs must either be physically wired or disabled if not connected.
Additionally, M-style motors require the drive-enable input to be true (high) for
motion to start.

User Variables
The SmartMotor has an array of user variables that are accessible to user programs and are
visible as CANopen objects. This provides a common area where information can be shared
between a user program and the CANopen network.

The variables use predefined names: a–z, aa–zz and aaa–zzz, which comprise a total of 78
variables; these are 32-bit signed integers.

Additionally, there is a 204-byte array. It can be accessed as 8, 16 or 32-bit signed values.
For more details, see the SmartMotor™ Developer's Guide.

There are 12 variables that are available as "mappable" variables. This feature allows a
CANopen SmartMotor in slave or master mode to accept PDO mappings to data of size 8, 16,
or 32 bits:

l Mappable Variables object (2220h) offers access to 8-bit user variables ab[0], ab[1], ab
[2] and ab[3]. For more details, see Object 2220h: 8-Bit Mappable Variables on page
153.

l Mappable Variables object (2221h) offers access to 16-bit user variables aw[32], aw
[33], aw[34] and aw[35]. For more details, see Object 2221h: 16-Bit Mappable
Variables on page 154.

l Mappable Variables object (2204h) offers access to 32-bit user variables aaa, bbb, ccc
and ddd. For more details, see Object 2204h: Mappable 32-bit Variables on page 142.

These mappable variables are available for applications such as general-purpose I/O blocks
using PDO communications. Also, note that the "master" does not always need to be the
SmartMotor receiving all data.

A wider range of user variables is accessible through the User Variable object (2201h).
However, this mechanism does not allow PDO communications — object 2201 is only available
through SDO communications. Therefore, it is typically used to pass constants or other
configuration data at startup, when a PLC may pass SDO data. During the Operational state, a
master may continue to pass data to variables through object 2201h if it is capable of SDO

Moog Animatics Class 5 CANopen Guide Rev. H

Page 45 of 233

User Variables

communication at that time. For more details, see the Object 2201h: User Variable on page
139.

A typical use of user variables in combination with CANopen is to receive information from
another motor or sensor device on the network. For example, variable aaa could be mapped
to a receive PDO (RxPDO). If that PDO is allocated a COB-ID of a sensor on the network, then
that information can be used in a SmartMotor user program.

Another common use of the mapping variables is to report information that does not have a
CANopen object. For instance, a user may want to perform a calculation in a user program
and report the result back to the master. In this case, the user program would set a variable
such as bbb=<expr>. The variable bbb should be mapped to a transmit PDO (TxPDO). Then
the master or other nodes on the network can access that information.

It is possible to use the SmartMotor as a bridge by combining the two techniques: receiving
data into a user variable and transmitting information from a user variable. This allows
interfacing of two devices that need intermediate computation. For example, a temperature
sensor could feed into the SmartMotor, and a process control loop in a SmartMotor program
could use that information to control a cooling fan through an I/O device. This may be
advantageous if there are applications that are easier to program in the SmartMotor instead
of the CANopen master.

Often, the mapping variable is used to send or receive a field of bits. When receiving, the
bitwise program operators can be used: | (or), & (and), !| (xor). For example, the following
IF expression will be true when bit 3 is set:

IF (ddd&8)!=0 'Will be true when ddd bit 3 is true.
... do action
ENDIF

When transmitting, the following are some simple techniques for setting bitwise values:

aaa=aaa|8 'Set bit 3.
aaa=aaa|bbb 'Logical OR all bits from aaa and bbb; save to aaa.
aaa=aaa!|64 'Toggle bit 6 (XOR).
aaa=aaa&-9 'Clear bit 3 and leave other bits alone.
aaa=aaa&(-3&-9) 'Clear bit 1 and 3 at the same time.
aaa=aaa|(2|8) 'Set bit 1 and 3 at the same time.

Moog Animatics Class 5 CANopen Guide Rev. H

Page 46 of 233

Calling Subroutines

The following table lists the bit numbers and the corresponding decimal values used to set
with OR (for 16 bits, only) or clear with AND (for 16 bits, only).

Bit number
(0–15)

Decimal value to
set bit with OR
(for 16 bits, only)

Decimal value to
clear bit with AND
(for 16 bits, only)

0 1 –2

1 2 –3

2 4 –5

3 8 –9

4 16 –17

5 32 –33

6 64 –65

7 128 –129

8 256 –257

9 512 –513

10 1024 –1025

11 2048 –2049

12 4096 –4097

13 8192 –8193

14 16384 –16385

15 32768 –32769

Calling Subroutines
The functionality of the SmartMotor can be extended by creating and loading a user program
into the motor. There are two ways to control the running of this program: a GOSUB call, or a
RUN command to run the entire program from the top of the program.

NOTE: A user program will always automatically run from the start when the motor
is powered on or reset unless the RUN? command is included at the top of the user
program. The RUN command is not the same as the RUN? command. For details on
these commands, see the SmartMotor™ Developer's Guide.

The GOSUB R2 object (2309h) provides access to the GOSUB, RUN and END commands. It is
PDO mappable, and it only reacts to a change of value. For details, see Object 2309h: GOSUB
R2 on page 172. This object replaces the functionality of objects 2305h and 2306h.

Bit 8 of the Status Word object (6041h) can be used to determine when the subroutine called
with object 2309h has finished. When the bit clears, the subroutine has completed.

Calls to subroutines using object 2309h are automatically blocked if a previous call made
through object 2309h is still busy. When that subroutine returns, bit 8 of the Status Word
object (6041h) will clear.

NOTE: Unlike GOSUB, there is no CANopen access to the GOTO function.

Moog Animatics Class 5 CANopen Guide Rev. H

Page 47 of 233

Command Interface (Object 2500h)

Command Interface (Object 2500h)
The SmartMotor has many commands that are not mapped to CANopen objects. Many of these
commands are obscure or take a complex set of arguments. A mechanism is provided to
access these commands by sending a command string to object 2500h.

This section provides details on the object 2500h command interface and use in program
upload/download.

Command Interface
This section describes the command interface for the Encapsulated Animatics Command
object (2500h). This object provides an interface to the SmartMotor command language.
Please note the following:

l The status information must read back from subindex 3 of object 2500h.

l This object is not accessible through PDO.

The following table describes the elements of object 2500h.

Object Subindex Description

2500h 0 Number of entries (3).

2500h 1 Command string to motor "VISIBLE STRING" type.

2500h 2 Response from motor "VISIBLE STRING" type.

2500h 3 Status from motor "UNSIGNED 8" type.

The status bits in subindex 3 of object 2500h are:

Bit Description

0 Command in progress.

1 Command complete/response ready.

2 Overflow.

3-7 Reserved.

The following procedure describes the steps to send a command:

1. Check that the "command in progress" = 0.

2. Write the command to subindex 1 of object 2500h; terminate the command with a null
value.

3. Read the status from subindex 3 of object 2500h; check the status of the "command
complete" bit.

4. Repeat the previous step if the "command complete" bit is 0.

5. When the "command complete" bit is 1, the command has completed. If it was a report
command, there will be a string response to read in subindex 2 of object 2500h; if it was
a non-report command, there will be no response. The values are ASCII-encoded
decimal format.

Moog Animatics Class 5 CANopen Guide Rev. H

Page 48 of 233

Program Upload/Download

Program Upload/Download
The Encapsulated Animatics Command object (2500h) behaves like a string command.
Therefore, it can support the upload and download of user programs. The following sections
describe the upload and download procedures.

Upload from Motor

The following steps are used to upload a user program from the SmartMotor to the host:

1. The host writes to the motor's subindex 1 of object 2500h with the UPLOAD (or UP)
command. Strings need to be null-terminated like most commands.

2. The host checks the "Response ready" and "Command in progress" flags in subindex 3 of
object 2500h.

3. When "Response ready" = 1, the host will read a data block of 0–31 bytes plus the null
terminator from subindex 2 of object 2500h.

4. The previous step is repeated until the "Command in progress" flag is 0 and the
"Response ready" flag is 0. That indicates the process has completed.

NOTE: On the final cycle of the upload, the motor will always set the "Response
ready" flag before clearing the "Command in progress" flag. This ensures that the
host has a reliable indicator when the final cycle has occurred and will not wait
forever. In other words, the host should stop looking for a response as soon as both
of those flags are clear.

Download to Motor

The following steps are used to download a user program from the host to the SmartMotor:

1. The host writes to motor's subindex 1 of object 2500h with the LOAD command. Strings
need to be null-terminated like most commands.

2. The host waits for the "Command in progress" flag in subindex 3 of object 2500h to
return to 0.

3. The host writes the program data to subindex 1 of object 2500h, first 32 bytes, with no
null terminator. This can include a header and anything after the header. The CAN
command manager will consume the header and whatever follows it.

4. The host waits for the "Command in progress" flag in subindex 3 of object 2500h to
return to 0. This serves as the ACK (acknowledgment) signal. There is no reading of
subindex 2 of object 2500h.

NOTE: Do not attempt to read subindex 2 of object 2500h because that buffer
is used for other purposes during this procedure.

5. The host writes more program data to subindex 1 of object 2500h, 32 bytes at a time,
with no null terminator. Handshaking continues through the "Command in progress"
flag. Transmission may be ended at any time by sending 0xFF 0xFF 0x20 in the
character stream.

NOTE: This sequence does not need to fall in the same buffer segment. There is no
need to pad the buffer.

Moog Animatics Class 5 CANopen Guide Rev. H

Page 49 of 233

CiA 402 Drive and Motion Control Profile

CiA 402 Drive and Motion Control
Profile
The CiA 402 Drive and Motion Control Profile supports the motion control of the SmartMotor.
The associated objects comprise a large portion of the object dictionary (see Drive and Motion
Control Profile on page 179). This profile is supported by many vendors of industrial controls.

CiA 402 Profile Motion State Machine 51

Control Words, Status Words and the Drive State Machine 51

Status Word (Object 6041h) 52

Control Word (Object 6040h) 53

Motion Profiles 54

Position Mode 54

Absolute Position Mode Summary 55

Absolute Position Mode Example 55

Relative Position Example 57

Velocity Mode 58

Velocity Mode Summary 59

Velocity Mode Example 59

Torque Mode 60

Torque Mode Summary 61

Torque Mode Example 61

Interpolated Position Mode 62

Interpolated Position Mode Summary 63

Example: Short Run on a Single Motor 64

Example: Continuous Run on a Single Motor 65

Example: ResumingMotion in IP Mode 66

Synchronization 66

User Bits 67

Splining 68

Variable-Length Segments 68

HomingMode 68

Homing Summary 69

Homing Example 69

Moog Animatics Class 5 CANopen Guide Rev. H

Page 50 of 233

CiA 402 Profile Motion State Machine

CiA 402 Profile Motion State Machine
Support for the CiA 402 motion profile (DS402) in the SmartMotor includes the Control Word
object (6040h) and the Status Word object (6041h). Under all types of motion, the control
word starts or stops the drive and the status word reports the state of the drive.

However, the type of motion profile is not controlled with these objects — it is commanded
through the Modes of Operation object (6060h) and reported from the Modes of Operation
Display object (6061h). For more details, see the examples in Motion Profiles on page 54.

Control Words, Status Words and the Drive State Machine
Refer to the following diagram of the DS402 Drive State Machine. The power drive system
finite state automaton (PDS FSA) is described in the DS402 specification. This is the
mechanism used to command the motor to begin a new move or turn the drive on/off. The
DS402 specification describes several operation states controlled by the Control Word object
(6040h) and read back using the Status Word object (6041h).

Start

Not ready to
switch on

Switch on
disabled

Ready to
switch on

Switched on

Operation
enabled

Quick stop
active

Fault

Fault reaction
active

Power on and initialization

Successful
initialization

Fault
reaction
complete

Automatic
transition

From any state

Automatic
transition
through

Switched on
state

Control Word:
Bit 1 = 1
Bit 2 = 1

Control Word:
Bit 0 = 1

Control Word:
Bit 3 = 1

Control Word:
Bit 3 = 0

Control Word:
Bit 0 = 0

Control Word:
Bit 0 = 0

Control Word:
Bit 2 = 0

or
Bit 1 = 0

Control Word:
Bit 1 = 0

Control Word:
Bit 7 = 1

Control Word:
Bit 2 = 0

Control Word:
Bit 2 = 0

or
Bit 1 = 0Control Word:

Bit 1 = 0

Status Word:
xxxx_xxxx_x00x_0111

Status Word:
xxxx_xxxx_x0xx_1111

Status Word:
xxxx_xxxx_x1xx_0000

Status Word:
xxxx_xxxx_x01x_0001

Status Word:
xxxx_xxxx_x01x_0011

Status Word:
xxxx_xxxx_x01x_0111

Status Word:
xxxx_xxxx_x0xx_1000

Status Word:
xxxx_xxxx_x0xx_0000

Control Word:
Bit 0 = 1
Bit 3 = 1

DS402 Drive State Machine

Moog Animatics Class 5 CANopen Guide Rev. H

Page 51 of 233

Status Word (Object 6041h)

Status Word (Object 6041h)
The Status Word object (6041h) reports the PDS FSA state machine per the DS402
specification. The following distinct states are defined, where "x" is a bit that could be either a
1 or a 0:

Status Word 6041h

(16 bits)
PDS FSA state Meaning

xxxx xxxx x0xx 0000 Not ready to switch on Drive is off

xxxx xxxx x1xx 0000 Switch on disabled Drive is off

xxxx xxxx x01x 0001 Ready to switch on Drive is off

xxxx xxxx x01x 0011 Switched on Drive is off

xxxx xxxx x01x 0111 Operation enabled Drive is enabled

xxxx xxxx x00x 0111 Quick stop active Drive is enabled

xxxx xxxx x0xx 1111 Fault reaction active Drive is enabled

xxxx xxxx x0xx 1000 Fault Drive is off

The state "Operation enabled" is the only one allowing normal operation (motion) of the
motor.

The quick stop will automatically transition out of the "Quick stop active" state to the "Switch
on disabled" state.

The "Fault reaction active" state will automatically transition to the "Fault" state unless the
fault reaction is "slow to a stop" rather than OFF or MTB.

For more details, see Object 6041h: Status Word on page 183.

Moog Animatics Class 5 CANopen Guide Rev. H

Page 52 of 233

Control Word (Object 6040h)

Control Word (Object 6040h)
The Control Word object (6040h) must be written to command the motor to start motion. Only
certain state transitions are allowed. Therefore, the PLC or host writing to the Control Word
object (6040h) should read the Status Word object (6041h) to determine the current state.

The following table describes the bits in the Control Word object (6040h). For more details,
see Object 6040h: Control Word on page 181.

State to enter
Bits of the Control Word

Allowed from
Bit 7 Bit 3 Bit 2 Bit 1 Bit 0

Switch on disabled 0 X X 0 X Ready to switch on,
Switched on,
Operation enabled,
Quick stop active (by forcing
bit 1 to a 0)

Ready to switch on 0 X 1 1 0 Switch on disabled,
Switched on,
Operation enabled

Switched on 0 0 1 1 1 Ready to switch on,
Operation enabled

Operation Enabled 0 1 1 1 1 Ready to switch on,
Switched on

Quick Stop active 0 X 0 1 X Operation enabled,
Ready to switch on,
Switched on

Switch on disabled N/A N/A N/A N/A N/A Quick stop active (automatic
transition when quick stop
completes)

Switch on disabled 0 to 1
transition

X X X X Fault

Fault N/A N/A N/A N/A N/A Fault reaction active
(automatic transition when
fault reaction completes)

Fault reaction active N/A N/A N/A N/A N/A Occurrence of a fault will
leave current state
(automatic transition when
fault occurs)

NOTE: Rising edge of bit 7 clears the fault unless a fault condition still exists.

Moog Animatics Class 5 CANopen Guide Rev. H

Page 53 of 233

Motion Profiles

A typical startup sequence of values to write to the control word is:

1. 0000h — Starting value.

2. 0080h — Clear past faults.

3. 0006h — Enter "Ready to Switch On" state.

4. 000Fh — Enter "Operation Enabled" state; for velocity or torque mode, this starts
motion.

5. 001Fh — Start a homing or position move.

Motion Profiles
This section provides example values written to specific objects for various motion profiles.

In these examples, it can be assumed that the writes are made through either PDO or SDO
communications. Typically, objects like the Control Word object (6040h) would be written
cyclically with PDO communications. However, it is also possible for a single SDO write to set
these values. If PDO communications are used, it is assumed that the master is writing values
continuously, and the noted sequence indicates when a value should be changed to a new
value.

Position Mode
This section describes the process for creating a motion using Absolute Position mode and
Relative Position mode.

It is assumed that either the SmartMotor's drive-enable input and hardware limit switch
inputs are in the ready state, or the user has issued the appropriate I/O commands to disable
the limits. For details, see Object 2100h: Port Configuration on page 136 and Object 2101h:
Bit IO on page 137.

Moog Animatics Class 5 CANopen Guide Rev. H

Page 54 of 233

Absolute Position Mode Summary

Absolute Position Mode Summary

The following table provides a summary of settings for creating a motion using Absolute
Position mode. For a different example in step format, see the next section.

Description SMI
Command

Index
Object
Code

Sub-
Index

Data

Length Hex Dec

Disable positive limit
switch input

CAUTION: Skip this
step if limit switches
are in use.

EIGN(2) 2101h 03 02 0002 2

Disable negative limit
switch input

CAUTION: Skip this
step if limit switches
are in use.

EIGN(3) 2101h 03 02 0003 3

Reset status word ZS 6040h 00 02 0080 128
0000 0000 1000 0000

Set Mode Position MP 6060h 00 01 01 1

Set profile speed in PP
mode

VT=xxxx 6081h 00 04 0000C350 50000

Set target position PT=0 607Ah 00 04 00000000 0

Set acceleration AT=xxxx 6083h 00 04 00000064 100

Set deceleration DT=xxxx 6084h 00 04 00000064 100

Change state: Ready to
switch on

6040h 00 02 0006 6
0000 0000 0000 0110

Change state: Switched
on

6040h 00 02 0007 7
0000 0000 0000 0111

Enable command, single
setpoint (motion not actu-
ally started yet)

6040h 00 02 002F 47
0000 0000 0010 1111

Begin motion to target pos-
ition

G 6040h 00 02 003F 63
0000 0000 0011 1111

Prepare for next command 6040h 00 02 002F 47
0000 0000 0010 1111

Set target position PT=1000 607Ah 00 04 000003E8 1000

Begin motion to target pos-
ition

G 6040h 00 02 003F 63
0000 0000 0011 1111

Absolute Position Mode Example

The following procedure shows the steps for creating a motion using Absolute Position mode.
For details on Absolute Position mode, see the SmartMotor™ Developer's Guide.

NOTE:
Position Units (PU): encoder counts
Acceleration/Deceleration Units (ADU): (encoder counts per (sample2)) * 65536
Velocity Units (VU): encoder counts per sample * 65536

Moog Animatics Class 5 CANopen Guide Rev. H

Page 55 of 233

Absolute Position Mode Example

1. Clear the faults by setting the Control Word object (6040h) to the following values:

a. 0

b. 0080h (128 decimal)

c. 0

2. Set the Modes of Operation object (6060h) to the value 1 (decimal).

3. Set the Profile Velocity object (6081h) to the desired speed in VU (for example, the
decimal value 100000). This is always a positive value. The target position determines
the direction of motion.

4. Set the Profile Acceleration object (6083h) to the desired acceleration in ADU (for
example, the decimal value 10).

5. Set the Profile Deceleration object (6084h) to the desired deceleration in ADU (for
example, the decimal value 10).

6. Set the Target Position object (607Ah) to the desired absolute position in PU.

7. Initialize and start the motion by setting the Control Word object (6040h) to the values:

a. 0006h (6 decimal) — This is required to satisfy the CiA 402 drive state machine.
For details, see CiA 402 Profile Motion State Machine on page 51.

b. 002Fh (47 decimal) — This configures the single-setpoint positioning mode.

c. 003Fh (63 decimal) — The motion begins.

8. Wait for the motion to complete.

9. Set the Target Position object (607Ah) to a new absolute position in PU. Motion will not
begin at this time.

10. Initialize, start and stop the motion by setting the Control Word object (6040h) to the
following values:

a. 002Fh (47 decimal) — Bit 4 must be transitioned for the new setpoint to begin. By
writing that value to the Control Word object (6040h), bit 4 will begin in the low
state. The next step will write a different value to that object, which will transition
bit 4 to a high state.

b. 003Fh (63 decimal) — Starts the motion.

c. 013Fh (319 decimal) — Stops the motion. The motor will decelerate before
reaching the target.

11. Initialize and resume the motion by setting the Control Word object (6040h) to the
following values:

a. 002Fh (47 decimal) — bit 4 must be transitioned for the motion to resume. By
writing that value to the Control Word object (6040h), bit 4 will begin in the low
state. The next step will write a different value to that object, which will transition
bit 4 to a high state.

b. 003Fh (63 decimal) — the motion resumes.

12. Turn off motor by setting the Control Word object (6040h) to the value 0.

Moog Animatics Class 5 CANopen Guide Rev. H

Page 56 of 233

Relative Position Example

Relative Position Example

The following procedure shows the steps for creating a motion using Relative Position mode.
For details on Relative Position mode, see the SmartMotor™ Developer's Guide.

1. Clear the faults by setting the Control Word object (6040h) to the following values:

a. 0

b. 0080h (128 decimal)

c. 0

2. Set the Modes of Operation object (6060h) to the value 1 (decimal).

3. Set the Profile Velocity object (6081h) to the desired speed in VU (for example, the
decimal value 100000). This is always a positive value. The target position determines
the direction of motion.

4. Set the Profile Acceleration object (6083h) to the desired acceleration in ADU (for
example, the decimal value 10).

5. Set the Profile Deceleration object (6084h) to the desired deceleration in ADU (for
example, the decimal value 10).

6. Set a relative target by setting the Target Position object (607Ah) to the desired relative
position in PU.

7. Initialize and start the motion by setting the Control Word object (6040h) to the
following values:

a. 0006h (6 decimal) — This is required to satisfy the 402 drive state machine.

b. 006Fh (111 decimal) — This configures the single-setpoint mode of positioning.

c. 007Fh (127 decimal) — The motion begins. This sets bit 6 to indicate a relative
move.

8. Wait for the motion to complete.

NOTE: If a relative move is commanded while a previous one is in progress,
the ending target position for the in-progress move is replaced. The new
ending position is calculated by adding the current commanded position
(when the command is received) and the relative target (object 607A). The
previous ending target position is not a part of this calculation.

9. Set a relative target by setting the Target Position object (607Ah) to the desired relative
position in PU. Motion will not begin at this time.

10. Set a new target and start the motion by setting the Control Word object (6040h) to the
following values:

a. 006Fh (111 decimal) — Bit 4 must be transitioned for the new setpoint to begin.
By writing that value to the Control Word object (6040h), bit 4 will begin in the low
state. The next step will write a different value to that object, which will transition
bit 4 to a high state.

b. 007Fh (127 decimal) — The motion begins.

11. Stop the motion by setting the Control Word object (6040h) to the value 017Fh (383
decimal). The motor will decelerate before reaching the target.

Moog Animatics Class 5 CANopen Guide Rev. H

Page 57 of 233

Velocity Mode

12. Initialize and resume the motion by setting the Control Word object (6040h) to the
following values:

a. 006Fh (111 decimal) — Bit 4 must be transitioned for the motion to resume. By
writing that value to the Control Word object (6040h), bit 4 will begin in the low
state. The next step will write a different value to that object, which will transition
bit 4 to a high state.

b. 007Fh (127 decimal) — The motion resumes. It performs a relative move from
the current position (not the original position).

13. Turn off motor by setting the Control Word object (6040h) to the value 0.

Velocity Mode
This section describes the process for creating a motion using Velocity mode.

It is assumed that either the SmartMotor's drive-enable input and hardware limit switch
inputs are in the ready state, or the user has issued the appropriate I/O commands to disable
the limits. For details, see Object 2100h: Port Configuration on page 136 and Object 2101h:
Bit IO on page 137.

Moog Animatics Class 5 CANopen Guide Rev. H

Page 58 of 233

Velocity Mode Summary

Velocity Mode Summary

The following table provides a summary of settings for creating a motion using Velocity mode.
For a different example in step format, see the next section.

Description SMI
Command

Index
Object
Code

Sub-
Index

Data

Length Hex Dec

Disable positive limit
switch input

CAUTION: Skip this
step if limit switches
are in use.

EIGN(2) 2101h 03 02 0002 2

Disable negative limit
switch input

CAUTION: Skip this
step if limit switches
are in use.

EIGN(3) 2101h 03 02 0003 3

Reset status word ZS 6040h 00 02 0080 128
0000 0000 1000 0000

Set Mode Velocity MV 6060h 00 01 03 3

Set velocity in PV mode VT=xxxx 60FFh 00 04 0000C350 50000

Set acceleration AT=xxxx 6083h 00 04 00000064 100

Set deceleration DT=xxxx 6084h 00 04 00000064 100

Change state: Ready to
switch on

6040h 00 02 0006 6
0000 0000 0000 0110

Change state: Switched
on

6040h 00 02 0007 7
0000 0000 0000 0111

Start command G 6040h 00 02 000F 15
0000 0000 0000 1111

Update velocity while
already running in PV
mode

VT=xxxx, G 60FFh 00 04 000186A0 100000

Halt command (set bit 8) X (default)

See object
605Dh

6040h 00 02 010F 271
xxxx xxx1 0000 1111

Start command G 6040h 00 02 000F 15
0000 0000 0000 1111

Quick stop command (bit
2 = 0)

Quick stop
then OFF

See objects
6085h,
605Ah

6040h 00 02 000B 11
xxxx xxxx 0000 1011

Velocity Mode Example

The following procedure shows the steps for creating a motion using Velocity mode. For
details on Velocity mode, see the SmartMotor™ Developer's Guide.

NOTE:
Position Units (PU): encoder counts
Acceleration/Deceleration Units (ADU): (encoder counts per (sample2)) * 65536
Velocity Units (VU): encoder counts per sample * 65536

Moog Animatics Class 5 CANopen Guide Rev. H

Page 59 of 233

Torque Mode

1. Clear the faults by setting the Control Word object (6040h) to the following values:

a. 0

b. 0080h (128 decimal)

c. 0

2. Set the Modes of Operation object (6060h) to the value 3 (decimal).

3. Set the Target Velocity object (60FFh) to the desired speed in VU (for example, the
decimal value 100000). To reverse the direction of motion, use a negative value.

4. Set the Profile Acceleration object (6083h) to the desired acceleration in ADU (for
example, the decimal value 10).

5. Set the Profile Deceleration object (6084h) to the desired deceleration in ADU (for
example, the decimal value 10).

6. Set the Control Word object (6040h) to the value 0006h (6 decimal). This is required to
satisfy the CiA 402 drive state machine. For details, see CiA 402 Profile Motion State
Machine on page 51.

7. Start, stop and resume the motion by setting the Control Word object (6040h) to the
following values:

a. 000Fh (15 decimal) — Starts the motion

b. 010Fh (271 decimal) — Stops the motion

c. 000Fh (15 decimal) — Resumes the motion

8. Change the speed by setting the Target Velocity object (60FFh) to the desired speed in
VU (for example, the decimal value 200000). The motor will immediately accelerate
/decelerate to the new speed. To reverse the direction of motion, use a negative value.

9. Turn off motor by setting the Control Word object (6040h) to the value 0.

Torque Mode
This section describes the process for creating a motion using Torque mode.

It is assumed that either the SmartMotor's drive-enable input and hardware limit switch
inputs are in the ready state, or the user has issued the appropriate I/O commands to disable
the limits. For details, see Object 2100h: Port Configuration on page 136 and Object 2101h:
Bit IO on page 137.

Moog Animatics Class 5 CANopen Guide Rev. H

Page 60 of 233

Torque Mode Summary

Torque Mode Summary

The following table provides a summary of settings for creating a motion using Torque mode.
For a different example in step format, see the next section.

Description SMI
Command

Index
Object
Code

Sub-
Index

Data

Length Hex Dec

Disable positive limit
switch input

CAUTION: Skip this
step if limit switches
are in use.

EIGN(2) 2101h 03 02 0002 2

Disable negative limit
switch input

CAUTION: Skip this
step if limit switches
are in use.

EIGN(3) 2101h 03 02 0003 3

Reset status word ZS 6040h 00 02 0080 128
0000 0000 1000 0000

Set Mode Torque MT 6060h 00 01 04 4

Set Torque Slope TS=xxxx 6087h 00 04 000000C8 200

Set Target Torque T=xxxx 6071h 00 02 0064 100

Change state: Ready to
switch on

6040h 00 02 0006 6
0000 0000 0000 0110

Change state: Switched
on

6040h 00 02 0007 7
0000 0000 0000 0111

Start command G 6040h 00 02 000F 15
0000 0000 0000 1111

Update torque while
already running in TQ
mode

T=xxxx, G 6071h 00 02 0096 150

Halt command (set bit 8) X (default)

See object
605Dh

6040h 00 02 010F 271
xxxx xxx1 0000 1111

Start command G 6040h 00 02 000F 15
0000 0000 0000 1111

Quick stop command (bit
2 = 0)

Quick stop
then OFF

See object
605Ah

6040h 00 02 000B 11
xxxx xxxx 0000 1011

Torque Mode Example

The following procedure shows the steps for creating a motion using Torque mode. For details
on torque mode, see the SmartMotor™ Developer's Guide.

NOTE: Units entered for objects 6071h and 6087h are specific to the DS402 profile.
In other words, they do not use the units that would be used by the T= or TS=
commands. For details, see Object 6071h: Target Torque on page 196. Also, see
Object 6087h: Torque Slope on page 208.

Moog Animatics Class 5 CANopen Guide Rev. H

Page 61 of 233

Interpolated Position Mode

1. Clear the faults by setting the Control Word object (6040h) to the following values:

a. 0

b. 0080h (128 decimal)

c. 0

2. Set the Modes of Operation object (6060h) to the value 4 (decimal).

3. Set the Target Torque object (6071h) as desired (for example, the decimal value 100).
To reverse the direction of motion, use a negative value.

4. Set the Torque Slope object (6087h) as desired (for example, the decimal value 200).
This controls the ramp-up/down rate to the previously-specified Target Torque.

5. Set the Control Word object (6040h) to the value 0006h (6 decimal). This is required to
satisfy the CiA 402 drive state machine. For details, see CiA 402 Profile Motion State
Machine on page 51.

6. Start, stop and resume the motion by setting the Control Word object (6040h) to the
following values:

a. 000Fh (15 decimal) — Starts the motion

b. 010Fh (271 decimal) — Stops the motion

c. 000Fh (15 decimal) — Resumes the motion

7. Change the torque by setting the Target Torque object (6071h) as desired (for example,
the decimal value 50). The motor will immediately ramp up/down to the setting. To
reverse the direction of motion, use a negative value.

8. Turn off the motor by setting the Control Word object (6040h) to the value 0.

Interpolated Position Mode
Interpolated position (IP) mode allows for buffering and execution of a constant stream of
positions. This is useful for host-driven applications with complex motion paths, such as CNC
machining.

There are several aspects to this mode of operation that require more effort to configure and
operate compared to position, velocity, or torque mode.

l Time synchronization should be used. Because of clock drifts, the individual motors will
consume position data at slightly different rates. Over a period of several hours, motors
could be significantly out of step (for example, one motor gets several data points
ahead of another). With time synchronization, the high-resolution timestamp object is
used to coordinate clocks in this process, and the motors will adjust their clocks
accordingly.

l Buffer level of data points must be maintained. There are specific objects to monitor,
and the host must not allow the buffer of data points to run empty or to overflow.
Therefore, the host must be able to accurately monitor and control the flow of data
points.

l Data points are entered as absolute positions. However, they are processed in a relative
format that depends on the position of the motor at a specific time during the setup and
configuration of IP mode.

Moog Animatics Class 5 CANopen Guide Rev. H

Page 62 of 233

Interpolated Position Mode Summary

Interpolated Position Mode Summary

The following table provides a summary of settings for creating a motion using Interpolated
Position mode. For a different example in step format, see the next section.

Description SMI
Command

Index
Object
Code

Sub-
Index

Data

Length Hex Dec

Note: this example works
best if motor starts at pos-
ition 0. See example for
position mode to position
the motor at a target of 0.

Disable positive limit
switch input

CAUTION: Skip this
step if limit switches
are in use.

EIGN(2) 2101h 03 02 0002 2

Disable negative limit
switch input

CAUTION: Skip this
step if limit switches
are in use.

EIGN(3) 2101h 03 02 0003 3

Reset status word ZS 6040h 00 02 0080 128
0000 0000 1000 0000

Set Mode Interpolation 6060h 00 01 07 7

Change state: Ready to
switch on

6040h 00 02 0006 6
0000 0000 0000 0110

Change state: Switched
on

6040h 00 02 0007 7
0000 0000 0000 0111

Clear buffer 60C4h 6 01 00 0

Enable buffer 60C4h 6 01 01 1

Set time period to 1
(second)

60C2h 1 01 01 1

Set time period to seconds 60C2h 2 01 00 0

Write data point 1 60C1h 1 04 00000000 0

Write data point 2 60C1h 1 04 000003E8 1000

Write data point 3 60C1h 1 04 00000BB8 3000

Write data point 4 60C1h 1 04 000007D0 2000

Write data point 5 60C1h 1 04 000003E8 1000

Write data point 6 60C1h 1 04 00000000 0

Write zero-length seg-
ment

60C2h 1 01 00 0

Write data point 60C1h 1 04 00000000 0

Enable command (motion
not actually started yet)

6040h 00 02 000F 15
0000 0000 0000 1111

Begin motion 6040h 00 02 001F 31
0000 0000 0001 1111

Moog Animatics Class 5 CANopen Guide Rev. H

Page 63 of 233

Example: Short Run on a Single Motor

Example: Short Run on a Single Motor

This example loads the interpolation buffer with a short set of data and then starts the
interpolation. The following procedure is intended for demonstration. Typically, a host will run
in IP mode continuously, which is shown in the next example.

1. Use Position mode to place the motor at the starting point for IP mode. For this
example, use an absolute move to position 0.

For reasons of initializing the buffer and the starting motor position, it is best to perform
a position move or relative-position move (PRT=0) before resetting the interpolation
buffer. This will ensure the motor is in the correct state for IP mode.

NOTE: Perform any origin shift before the position move — do not change the
origin (OSH=, O=) after the position move.

2. Set the Control Word object (6040h) to the value 000Fh. Assuming the motor is holding
at the starting position, this will leave the drive on.

3. Clear the buffer by setting subindex 6 of the Interpolation Data Configuration object
(60C4h) to the value 0.

4. Buffer enable: set subindex 6 of Interpolation Data Configuration object (60C4h) to the
value 1.

5. Set the interpolation time:

a. Set subindex 2 of the Interpolation Time Period object (60C2h) to the value 0,
which designates whole seconds.

b. Set subindex 1 of the Interpolation Time Period object (60C2h) to the value 1.
When combined with the above setting, this results in one second per data point.

6. Set the Modes of Operation object (6060h) to the value 7.

7. Put data in the buffer by writing the following values to subindex 1 of the Interpolation
Data Record object (60C1h):

a. 0 (the current position)

b. 2000

c. 6000

d. 8000

e. 6000

f. 3000

g. 0 (the final point)

8. Create and write a zero-length segment to end Interpolation mode:

a. Write the value 0 to the Interpolation Time Period object (60C2h), subindex 1.
This is used to create a zero-length segment to end Interpolation mode.

b. Write the value 0 to the Interpolation Data Record object (60C1h), subindex 1.
This is the same value as the final point. It writes the final zero-length segment
that ends Interpolation mode.

Moog Animatics Class 5 CANopen Guide Rev. H

Page 64 of 233

Example: Continuous Run on a Single Motor

9. Set the Control Word object (6040h) to the value 0006h (6 decimal). This is required to
satisfy the CiA 402 drive state machine. For details, see CiA 402 Profile Motion State
Machine on page 51.

10. Set the Control Word object (6040h) to the value 000Fh (15 decimal).

11. Start the process by setting the Control Word object (6040h) to the value 1Fh.

12. When the final point has finished, the motor will clear the trajectory bit in the
SmartMotor status word. For details, see Object 2304h: Motor Status on page 159.

Also, the Interpolation Mode Status object (2400h) will report if IP mode is running in bit
15. For details, see Object 2400h: Interpolation Mode Status on page 173.

Example: Continuous Run on a Single Motor

This example procedure shows how to continuously operate a host in IP mode.

1. Use Position mode to place the motor at the starting point for IP mode. For this
example, use an absolute move to position 0.

For reasons of initializing the buffer and the starting motor position, it is best to perform
a position move or relative-position move (PRT=0) before resetting the interpolation
buffer. This will ensure the motor is in the correct state for IP mode.

NOTE: Perform any origin shift before this position move — do not change
the origin (OSH=, O=) after this position move.

2. Set the Control Word object (6040h) to the value 000Fh. Assuming the motor is holding
at the starting position, this will leave the drive on.

3. Clear the buffer by setting subindex 6 of Interpolation Data Configuration object
(60C4h) to the value 0.

4. Enable the buffer by setting subindex 6 of Interpolation Data Configuration object
(60C4h) to the value 1.

5. Set the interpolation time:

a. Set subindex 2 of the Interpolation Time Period object (60C2h) to the value –3,
which designates milliseconds.

b. Set subindex 1 of the Interpolation Time Period object (60C2h) to the value 20.
Combined with the above setting, this results in 20 milliseconds per data point.
Other values are acceptable, of course, depending on the network or host cycle
time.

6. Set the Modes of Operation object (6060h) to the value 7.

7. Put data in the buffer:

a. Write the value 0 (the current position) to the Interpolation Data Record object
(60C1h), subindex 1.

b. Write the first data point in units of encoder counts to the Interpolation Data
Record object (60C1h), subindex 1.

c. Repeat the previous step until a sufficient number of data points are buffered. In
other words, enough to keep feeding Interpolation mode if the host has latencies
or temporarily becomes unresponsive.

8. Start the process by setting the Control Word object (6040h) to the value 1Fh.

Moog Animatics Class 5 CANopen Guide Rev. H

Page 65 of 233

Example: Resuming Motion in IP Mode

9. Monitor the buffer capacity by using bits 0–6 of the Interpolation Mode Status object
(2400h), which will report the number of buffer spaces available. As the number of
available spaces approaches 0, the host should wait before sending further data.

NOTE: Bits 0–6 must be masked because the upper bits are used to report
other information. For details, see Object 2400h: Interpolation Mode Status
on page 173.

10. End Interpolation mode:

a. Set subindex 1 of the Interpolation Time Period object (60C2h) to the value 0.

b. Repeat the final data point after this time period has been changed, and then write
the repeated final data point to Interpolation Data Record object (60C1h),
subindex 1. When the motor consumes this point, it will end its trajectory and hold
its position. No further data points will be accepted.

11. Set the Control Word object (6040h) to the value 000Fh. This will leave the drive on but
holding at the ending position.

Example: Resuming Motion in IP Mode

To resume motion without leaving IP mode:

1. Set the Control Word object (6040h) to the value 000Fh. This will be used later to cause
a rising edge on bit 4.

2. Do not clear the buffer. It is not necessary because this example assumes the most
recent value written to subindex 6 of the Interpolation Data Configuration object
(60C4h) was 1.

3. Set subindex 1 of the Interpolation Time Period object (60C2h) back to the desired value
(do not use 0).

4. Add more points to the buffer using subindex 1 of the Interpolation Data Record object
(60C1h). Start with the current position.

5. Start the process by setting the Control Word object (6040h) to the value 1Fh. The
Interpolation mode will resume. Monitor the buffer capacity and end IP mode as
described in the previous examples.

Synchronization

When running multiple motors in Interpolation mode, the rate at which data points are
consumed can vary by several parts per million. While this sounds small, over time it will lead
to the SmartMotors not reaching a coordinated point simultaneously.

The following brief example is for a network of two motors with the master producing a sync
every 10 milliseconds. It is also possible for the time-producer motor to be the sync producer
if the CANopen master cannot do so (this method is not shown here).

NOTE: This is an advanced topic that requires an understanding of PDO mapping.
For details, see PDO Mapping on page 71.

1. Configure one motor as the time producer:

a. Map transmit PDO 4 to object 1013h.

b. Set the transmission type to 100 (to transmit at once per second because the sync
rate is 100/second). The exact rate is not critical, but it is typically on the order of
one second.

Moog Animatics Class 5 CANopen Guide Rev. H

Page 66 of 233

User Bits

2. Configure all other motors as time consumers:

a. Map receive PDO 4 to object 1013h. Use the same COB-ID that was used to
transmit PDO 4 from the time-producer.

b. Set the transmission type to 254. This will accept the high-resolution timestamp
when the time producer transmits it. The most recent sync is the reference point
in time where the timestamps from the producer and consumers are compared.

NOTE: The time consumer adjusts itself to match the time producer.

3. Switch to a network operational state.

When the first timestamp is received by the time consumers, they will accept the value
without trying to adjust to it. This is considered the starting point, so the consumer clocks are
immediately forced to this value instead of adjusting to it. If the synchronization process is
interrupted or the motors are switched out of operational network state, then the
synchronization process will stop. This means that when it is restarted, it could take
significant time for the adjustment process to catch up. Instead, the adjustment process
should be forced to reaccept the time as it did at the beginning of the process. This can be
accomplished by two different methods:

1. Issue SmartMotor command CANCTL(2,0).

2. Switch to Interpolation mode using object 6060h. The motor must be in a different
operating mode, and it must see the transition to value 7 (Interpolation mode) in object
6060h.

User Bits

A special feature is provided by the SmartMotor that allows status bits to be correlated with
specific data points in the buffer. The status bit can be used to indicate when a particular
segment between two points is achieved. This can be used to call special program routines or
to set outputs to control external devices. For example, a laser-engraving tool may need a
simple on/off state at certain points in the motion path. This event is correlated with the
specific range of positions in the buffer.

To write the bits, write to object 2403h — the range of values is 0 to 3Fh, which represents six
bits. These are associated with the next data record written to the Interpolation Data Record
object (60C1h), subindex 1. When the associated data point is reached, the new value (bit
pattern) will be visible in SmartMotor status word 8 (object 2304h, subindex 9) as bits 8–13.

The following procedure provides an example of the user bits feature. The value of object
2403h is initially 0. The buffer is populated either initially or in a continuous run situation:

1. Put data in the buffer by writing the following values to subindex 1 of the Interpolation
Data Record object (60C1h):

a. 2000

b. 3000

2. Set the Interpolation User Bits object (2403h) to the value 1.

3. Put data in the buffer by writing the value 4000 to the Interpolation Data Record object
(60C1h), subindex 1.

4. Set the Interpolation User Bits object (2403h) to the value 0.

Moog Animatics Class 5 CANopen Guide Rev. H

Page 67 of 233

Splining

5. Put data in the buffer by writing the following values to subindex 1 of the Interpolation
Data Record object (60C1h):

a. 5000

b. 6000

In the previous example, the user bit indicates when the motor position is between 3000 and
4000. The user bit is accessible in SmartMotor status word 8 (object 2304h, subindex 9). This
can be read in a user program with the following code:

IF B(8,8) ' RB(status word 8, bit 8)
OS(0) ' Set output 0.

ELSE
OR(0) ' Clear output 0.

ENDIF

Splining

By default, object 60C0h is set to 0. This commands the linear form of interpolation. To
smooth data points, splined motion can be enabled by setting object 60C0h to the value –3.
The change to this mode takes effect with the next data point written through object 60C1h,
subindex 1.

NOTE: While it is outside the scope of this manual, it is possible to mix splined and
linear interpolation per written data point. This provides interpolation control in
cases where spline interpolation does not provide the desired motion path.

Variable-Length Segments

It is possible to vary the length (in time) of the interpolation segment between data points.
Object 60C2h, subindex 1 and 2, control the interpolation timer period. There are some cases
where it may be beneficial to reduce the required number of points. For example, rounded
areas require more points, but straight segments require less points. The application of this
technique is outside the scope of this manual. However, note that any change to object 60C2h
will be associated with the next position data record written through object 60C1h, subindex 1.

Homing Mode
This section describes the process for activating the SmartMotor homing process.

l For homing modes 1, and 17 there must be a negative limit switch connected and
enabled. The positive limit may also be present or not, but it cannot be faulted.

l For homing modes 2, and 18 there must be a positive limit switch connected and
enabled. The negative limit may also be present or not, but it cannot be faulted.

l For other homing modes, the limit switches must either be cleared of faults, or they
must be disabled.

Moog Animatics Class 5 CANopen Guide Rev. H

Page 68 of 233

Homing Summary

Homing Summary

The following table provides a summary of settings for activating the homing process. For a
different example in step format, see the next section.

Description SMI
Command

Index
Object
Code

Sub-
Index

Data

Length Hex Dec

Note: Limit switches must
be physically connected
in this example. The neg-
ative limit switch will be
used as the home ref-
erence.

Reset status word ZS 6040h 00 02 0080 128
0000 0000 1000 0000

Set Mode Homing (HM) 6060h 00 01 06 6

Set homing method 6098h 00 01 01 1

Set homing speed 1 6099h 01 04 000186A0 100000

Set homing speed 2 6099h 02 04 00002710 10000

Set homing acceleration 609Ah 00 04 00000064 100

Set homing offset 607Ch 00 04 000003E8 1000

Change state: Ready to
switch on

6040h 00 02 0006 6
0000 0000 0000 0110

Change state: Switched
on

6040h 00 02 0007 7
0000 0000 0000 0111

Enable operation 6040h 00 02 000F 15
0000 0000 0000 1111

Start command G 6040h 00 02 001F 31
0000 0000 0001 1111

The homing will begin by
heading toward the neg-
ative limit.

Homing Example

The following procedure shows the steps for activating the homing process.

NOTE:
Position Units (PU): encoder counts
Acceleration/Deceleration Units (ADU): (encoder counts per (sample2)) * 65536
Velocity Units (VU): encoder counts per sample * 65536

1. Clear the faults by setting the Control Word object (6040h) to the following values:

a. 0

b. 0080h (128 decimal)

c. 0

2. Set the Modes of Operation object (6060h) to the value 6 (decimal).

3. Set the Homing Method object (6098h) to the method desired. For details, see Object
6098h: Homing Method on page 210.

Moog Animatics Class 5 CANopen Guide Rev. H

Page 69 of 233

Homing Example

4. Set subindex 1 of the Homing Speed object (6099h) to the desired speed in VU (for
example, the decimal value 100000). This is always a positive value. The Homing mode
determines the direction of motion.

5. Set subindex 2 of the Homing Speed object (6099h) to the desired speed in VU (for
example, the decimal value 100000). This is always a positive value. The Homing mode
determines the direction of motion.

6. Set the Homing Acceleration object (609Ah) to the desired acceleration in ADU (for
example, the decimal value 10).

7. (Optional) Set the Home Offset object (607Ch) to the desired homing offset in PU.

8. Initialize and start the motion by setting the Control Word object (6040h) to the
following values:

a. 0006h (6 decimal) — This is required to satisfy the CiA 402 drive state machine.
For details, see CiA 402 Profile Motion State Machine on page 51.

b. 000Fh (15 decimal)

c. 001Fh (31 decimal) — The motion begins.

9. Wait for the motion to complete. The Status Word object (6041h) will report when the
home position has been located. When the motor has come to a stop, then bit 10 =1
(target reached) and bit 12 = 1 (home position found).

If bit 13 = 1 in the Status Word object (6041h), there was an error and homing was not
completed.

Moog Animatics Class 5 CANopen Guide Rev. H

Page 70 of 233

PDO Mapping

PDO Mapping
This chapter provides information on the Process Data Objects (PDOs) and the PDO mapping
process. It also describes the low-level steps that must occur at startup between the master
and the motor to enable PDO communications.

Overview 72

Mapping and Communication Parameters Objects 73

Communications Parameters Objects 74

Mapping Parameters Objects 75

Mapping Entries 75

Mapping Procedure 76

Time Sync Motors Mapping Procedure 76

Example Start-up Sequence 78

Moog Animatics Class 5 CANopen Guide Rev. H

Page 71 of 233

Overview

Overview
Process Data Objects (PDOs) are containers that hold one or more data objects. The set of
objects in a PDO can be configured through the process of dynamic mapping. In a
SmartMotor, this means that data objects such as the Velocity Actual Value object (606Ch)
and the Status Word object (6041h) can be placed in the same PDO transmission from the
SmartMotor. The same can be done for receive PDOs — the motor will unpack the received
PDO according to the mapping configuration and consume the data objects.

A CAN packet contains a maximum payload of 8 bytes. This creates a limit to the amount of
data that is mapped into a single PDO. For example, a PDO can contain one INTEGER32 and
two INTEGER16 objects. Other combinations are allowed, but the number of bytes must be 8
or less.

A set of objects is available for performing object mapping. These objects are included in the
set known as the Communication Profile objects (1000h-1FFFh). This is the standard for any
CANopen devices that support dynamic mapping. For details on the Communication Profile
objects, see Communication Profile on page 97.

NOTE: Some CANopen masters may have a graphical interface or automated
means of performing this mapping.

Moog Animatics Class 5 CANopen Guide Rev. H

Page 72 of 233

Mapping and Communication Parameters Objects

Mapping and Communication Parameters
Objects
The following table lists the overall set of mapping and communication parameters objects.
Note that all of these contain sub-objects, which are described in the tables later in this
section.

Object

decimal hex Description

5120 1400 Receive PDO1 Communication Parameters
5121 1401 Receive PDO2 Communication Parameters

5122 1402 Receive PDO3 Communication Parameters

5123 1403 Receive PDO4 Communication Parameters

5124 1404 Receive PDO5 Communication Parameters

5632 1600 Receive PDO1 Mapping Parameters

5633 1601 Receive PDO2 Mapping Parameters

5634 1602 Receive PDO3 Mapping Parameters

5635 1603 Receive PDO4 Mapping Parameters

5636 1604 Receive PDO5 Mapping Parameters

6144 1800 Transmit PDO1 Communication Parameters

6145 1801 Transmit PDO2 Communication Parameters

6146 1802 Transmit PDO3 Communication Parameters

6147 1803 Transmit PDO4 Communication Parameters

6148 1804 Transmit PDO5 Communication Parameters

6656 1A00 Transmit PDO1 Mapping Parameters

6657 1A01 Transmit PDO2 Mapping Parameters

6658 1A02 Transmit PDO3 Mapping Parameters

6659 1A03 Transmit PDO4 Mapping Parameters

6660 1A04 Transmit PDO5 Mapping Parameters

Moog Animatics Class 5 CANopen Guide Rev. H

Page 73 of 233

Communications Parameters Objects

Communications Parameters Objects
The following table describes the Communications Parameters objects (receive and transmit),
which have sub-objects of the same structure.

Subindex
(decimal) Description

0 Number of Entries: The number of sub-objects in the object; the value is 5
(read only).

1 COB-ID: This PDO will listen for CAN packets with this identifier (Receive
PDO) or transmit CAN packets with this identifier (Transmit PDO).

2 Transmission Type:

Value 0: N/A

Value 1: Transmit on sync packet (Transmit PDO). Accept data on sync
packet (Receive PDO). The Transmit PDO is sent when a sync packet is
seen.

Values 2–240: Same as value 1, except the rate is divided (e.g., the value
2 specifies every other sync packet).

Values 241–251: Reserved.

Values 252, 253: Not supported.

Value 254: Transmit if the self-timer has expired. This mode simply
transmits this PDO at the rate of the event timer.

Value 255: Transmit if either the event timer period expires or an object
mapped in the PDO changes value. The event timer for each PDO resets
each time a transmission occurs through either mechanism. Therefore, the
event timer is a maximum time between transmissions; the inhibit time is
a minimum time between transmissions.

3 Inhibit time: Limits how often a transmission is allowed. This is typically
left at the default setting. The units are: value * 100 microseconds (i.e., a
value of 1 is 100 microseconds).

4 Compatibility entry: Use the default setting.

5 Event Timer: The maximum time (in milliseconds) between transmissions
of this PDO if the transmission type value for a transmit PDO is 254 or 255.

Moog Animatics Class 5 CANopen Guide Rev. H

Page 74 of 233

Mapping Parameters Objects

Mapping Parameters Objects
The following table describes the Mapping Parameters objects (receive and transmit), which
have sub-objects of the same structure.

Subindex
(decimal) Description

0 Number of Entries: Defines the number of objects that are mapped within
this PDO. For instance, if "Mapping Entry 1" and "Mapping Entry 2" have
been set up, then write the value 2.

1 Mapping Entry 1: Points to the mapped object. For details, see the fol-
lowing sections.

2 Mapping Entry 2: Points to the mapped object. For details, see the fol-
lowing sections.

3 Mapping Entry 3: Points to the mapped object. For details, see the fol-
lowing sections.

4 Mapping Entry 4: Points to the mapped object. For details, see the fol-
lowing sections.

Mapping Entries
Only four mapping entries are allocated for the SmartMotor. Therefore, a maximum of four
objects can be mapped into a PDO. The mapping entries must be filled contiguously starting
from mapping entry 1. For example, for three entries, use mapping entry 1, 2 and 3.

All of these mapping entries are UNSIGNED32-bit values. There are three pieces of data
packed into each of these fields to represent the object being mapped:

l The object number

l The object subindex (0 if none)

l The object size (in bits)

Therefore, in the form: (hex) nnnniiss

l n: object number

l i: subindex

l s: size

The following example uses the Velocity Actual Value object (606Ch):

(hex) 606c0020

CAUTION: There is a specific procedure defined by the CANopen specification
for mapping a variable. This procedure must be followed or an error will occur,
which will prevent the change to the mapping.

Moog Animatics Class 5 CANopen Guide Rev. H

Page 75 of 233

Mapping Procedure

Mapping Procedure
The following procedure uses the previous Velocity Actual Value object example. Transmit
PDO 1 is mapped to contain the Velocity Actual Value object (606Ch) and the Status Word
object (6041h).

1. Enter the NMT Pre-Operational state.

2. Set bit 31 of the COB-ID — set subindex 1 of the Transmit PDO Communication
Parameter 1 object (1800h) to the value C0000180h. This assumes that subindex 1 of
object 1800h has been set to the default value 40000180h.

3. Set the number of entries to 0 in subindex 0 of the Transmit PDO Mapping Parameter 1
object (1A00h).

4. Using the same object (1A00h), set the mapping object. It uses a 32-bit value with the
following order: highest 2 bytes: object; next byte: subindex; the last byte: length in
bits.

a. For the status word, set subindex 1 = 60410010h.

b. For the actual velocity, set subindex 2 = 606c0020h.

5. Using the same object (1A00h), set the number of entries back to the number of items
created in the previous step — set subindex 0 to the value 2.

6. Clear bit 31 of the COB-ID — set subindex 1 of object 1800h to the value 40000180h.
This will specify this PDO to transmit with the COB-ID of 180h.

7. Set the Transmission Type in subindex 2 of object 1800h to "sync" (1-240) or "event
timer" (254-255).

If the "event timer" is chosen, then also specify the number of milliseconds between
transmissions in subindex 5 of object 1800h.

8. Enter the NMT Operational state.

Time Sync Motors Mapping Procedure
The following procedure maps SmartMotors to synchronize (following) motion based on an
external encoder input.

1. External encoder:

a. Node-ID: 100

b. Transmit PDO 1:

1. Transmission type 1 (sync)

2. COB ID: 1e4h

3. Mapping: object 6004h (32-bit)

Moog Animatics Class 5 CANopen Guide Rev. H

Page 76 of 233

Time Sync Motors Mapping Procedure

2. SmartMotor 1

a. Node-ID: 1

b. Receive PDO 1:

1. Transmit type 1 (sync reception)

2. COB ID: 1e4h (encoder’s transmit PDO)

3. Mapping: object 2208h, subindex 3 (32 bit)

c. Receive PDO 2:

1. Transmit type 1 (sync reception)

2. COB ID: 301h

3. Mapping: object 2209h, subindex 0 (16 bit)

d. Receive PDO 3: (optional if control word desired as PDO – not required to
synchronize following mode.)

1. Transmit type 1 (sync reception)

2. COB ID: 401h

3. Mapping: object 6040h, subindex 0 (16 bit)

3. SmartMotor 2

a. Node-ID: 2

b. Receive PDO 1:

1. Transmit type 1 (sync reception)

2. COB ID: 1e4h (encoder’s transmit PDO.)

3. Mapping: object 2208h, subindex 3 (32 bit)

c. Receive PDO 2:

1. Transmit type 1 (sync reception)

2. COB ID: 301h (same as motor 1)

3. Mapping: object 2209h, subindex 0 (16 bit)

d. Receive PDO 3: (optional if control word desired as PDO – not required to
synchronize following mode),

1. Transmit type 1 (sync reception)

2. COB ID: 402h

3. Mapping: object 6040h, subindex 0 (16 bit)

4. Use the same process for the remaining motors.

Also, see the following example start-up sequence that is based on this mapping.

Moog Animatics Class 5 CANopen Guide Rev. H

Page 77 of 233

Example Start-up Sequence

Example Start-up Sequence
The following is an example start-up sequence based on an application using the previous
mapping.

1. Power up of system

2. PLC/Master: Set encoder PDO parameters, PDO mapping, any other settings.

3. PLC/Master: Set motor 1 PDO mappings, PDO parameters. Repeat for motor 2, 3, etc.

4. PLC/Master: Set motor 1 object 1006h to cycle time in micro seconds. Example: 10
millisecond sync rate: set value to 10000. Repeat for motor 2, 3, etc.

5. PLC/Master: begin sending sync packet (COB-ID 80h) continuously at selected rate.

6. PLC/Master: Set object 6060h to value -11 in each SmartMotor.

7. PLC/Master: Clear limits in each SmartMotor(if no hardware limit switches):

a. Write to object 2101h, subindex 3: value = 2

b. Write to object 2101h, subindex 3: value = 3

8. PLC/Master: configure object 220Ah – 220Dh in each motor to configure follow ratio,
and ramp-up/ramp-down rates in follow mode.

9. PLC/Master: configure object 2207h in each motor to configure the maximum expected
value from the encoder. For example if encoder has position range of 0 to 4095 (4096
resolution), then set value in object 2207h to the value: 4095.

10. PLC/Master: Set NMT state to operational (broadcast to encoder and all motors.)

11. PLC/Master: clear faults in each SmartMotor:

a. Write 0080h to object 6040h.

b. Write 0000h to object 6040h.

12. PLC/Master: enable operation in each SmartMotor:

a. Write 0006h to object 6040h.

b. Write 0007h to object 6040h.

c. Write 000Fh to object 6040h.

13. Motors are now following the encoder.

14. To halt all SmartMotors, send RxPDO 2 (mapped to object 2209h) with bit 0 set to value
1. All motors receive this at the same sync interval. All motors will begin ramp down
equivalent to X(2) command.

15. To resume all SmartMotors, send RxPDO 2 (mapped to object 2209h) with bit 0 set to
value 0. All motors receive this at the same sync interval. All motors will begin ramp up
equivalent to G(2) command.

Also, see the example user program: CAN Bus - Time Sync Follow Encoder in Chapter 3 of the
SmartMotor Developer's Guide for a similar application that uses a SmartMotor as the
"master".

Moog Animatics Class 5 CANopen Guide Rev. H

Page 78 of 233

CANopen User Program Commands

CANopen User Program Commands
This chapter provides details on the CANopen commands used with the SmartMotor and its
user program. SmartMotor programming is described in the SmartMotor™ Developer's Guide.
The SmartMotor user program allows the motor to take on autonomous or distributed control
functions needed in an application.

NOTE: The CAN network must have all devices set to the same baud rate for
proper operation.

Address and Baud Rate Commands 80

CADDR=frm 80

CBAUD=frm 80

CAN Error Reporting Commands 80

=CAN, RCAN 80

RB(2,4), x=B(2,4) 83

Network Control Commands 83

CANCTL(action, value) 83

NMT(address, command code) 85

SDORD(address, obj index, subindex, bytecount) 86

SDOWR(address, obj index, subindex, bytecount, data) 86

Exceptions to NMT, SDORD and SDOWRCommands 87

Moog Animatics Class 5 CANopen Guide Rev. H

Page 79 of 233

Address and Baud Rate Commands

Address and Baud Rate Commands
The following are related commands. For more details on these commands, see the
SmartMotor™ Developer's Guide.

CADDR=frm
Set can address

Where frm is a number from 1 to 127. The value is stored in the SmartMotor's EEPROM.
However, the SmartMotor must be powered off and on for it to take effect.

CBAUD=frm
Set CAN baud rate

Where frm may be one of the following bit rates (bits/second): 1000000, 800000, 500000,
250000, 125000, 50000 and 20000. The value is stored in the SmartMotor's EEPROM.
However, the SmartMotor must be powered off and on for it to take effect.

The setting of 10000 bits/second is not supported. For details on other unsupported CANopen
features, see Not Supported on page 33.

CAN Error Reporting Commands
The following are related commands. For more details on these commands, see the
SmartMotor™ Developer's Guide.

=CAN, RCAN
Get CAN error

The =CAN and RCAN commands are used to assign/report errors and certain status
information for the CAN bus.

l Assigned to a program variable: x=CAN(y)

l As a report: RCAN(y)

Where y is the following:

Moog Animatics Class 5 CANopen Guide Rev. H

Page 80 of 233

=CAN, RCAN

Assignment Report Description

=CAN(0) RCAN(0) Gets the CAN bus status bits:
(*Indicates an error bit)

Bit Description

0 CAN power okay (not used by CANopen)

 1* DeviceNet COM fault occurred (not used by CANopen)

2 DeviceNet Power Ignore option enabled (not used by
CANopen)

3 Reserved

 4* User attempted a Combitronic read from broadcast address

 5* Combitronic debug, internal issue.

 6* Timeout (Combitronic client)

 7* Combitronic server ran out of buffer slots

 8* Errors reached warning level

 9* Receive Errors reached warning level

 10* Transmit Errors reached warning level

 11* Receive Passive Error

 12* Transmit Passive Error

 13* Bus Off Error

 14* RX buffer 1 overflowed

 15* RX buffer 0 overflowed

=CAN(1) RCAN(1) Gets the value of the current NMT state:

l Pre-Operational: 127
l Operational: 5
l Stopped: 4

=CAN(2) RCAN(2) Gets the value of the Control Word object (6040h)

=CAN(3) RCAN(3) Gets the value of the Status Word object (6041h)

Moog Animatics Class 5 CANopen Guide Rev. H

Page 81 of 233

=CAN, RCAN

Assignment Report Description

=CAN(4) RCAN(4) Gets the result code of the most recent SDO read or write, or NMT
command as a master.

Code Description Type

0 No error (operation succeeded). SDO
NMT

 >0 Error from remote device as defined by CANopen
and/or remote device datasheet. Refer to
SDO Response Error Codes.

SDO

-1 Timeout SDO

-2 Multiple commands issued (tried to call an SDO
operation while SDO was busy, such as from an
interrupt).

SDO

-3 Master disabled. Use appropriate CANCTL(…) func-
tion to activate master mode.

SDO
NMT

-4 Protocol not supported. The remote device attemp-
ted to respond with an unsupported method.

SDO

-5 Transmit fail. Hardware, baud rate, cabling or sim-
ilar is causing a backlog in the transmit buffer.

SDO
NMT

-6 Wrong size. SDORD command was called with one
data size; response from remote device was dif-
ferent size.

SDO
read

-20 Invalid host. The remote device address is out of
possible range.

SDO
NMT

-21 Invalid data size (requested an unsupported size). SDO

-22 Invalid object index (outside the allowed range).
Index must be from 0 to 65535.

SDO

-23 Invalid object subindex (outside the allowed
range). subindex must be from 0 to 255.

SDO

-24 Invalid NMT command state. Requested NMT state
is out of range (this is a gross range check; it
doesn't imply all values in the range are valid).

NMT

The =CAN(0) and RCAN(0) commands are used to report a bit map of conditions that could
occur over the CAN bus. Not all bits are error bits. Therefore, it cannot be assumed that a
nonzero value for RCAN is an error.

RCAN, which is the same as RCAN(0), reports a decimal number that is a combination of the
bits shown in the =CAN(0)/RCAN(0) row of the previous table. Use the CAN command, which
is the same as =CAN(0), in a program to assign the decimal number to a variable, for
example:

x=CAN

Moog Animatics Class 5 CANopen Guide Rev. H

Page 82 of 233

RB(2,4), x=B(2,4)

A calculator with a binary display function can convert this decimal number to indicate the set
of bits shown. Also, the SmartMotor Developer's Worksheet can be used for this conversion. It
is available from the Moog Animatics website at:

http://www.animatics.com/support/download-center.html

NOTE: Object 2304h, subindex 3, bit 4 (CAN error) reports true if any of the error
indications above are set. In a user program, this is a simpler test than attempting
to filter the result of RCAN for the error conditions.

RB(2,4), x=B(2,4)
Determine if CAN error has occurred

Report/get if an error state has occurred over CAN, CANopen or Combitronic. Further
investigation through RCAN(0) will give more details. This can be cleared using the Z(2,4) or
ZS command.

For more details, see the SmartMotor™ Developer's Guide.

Network Control Commands
The following are related commands. For more details on these commands, see the
SmartMotor™ Developer's Guide.

CANCTL(action, value)
Control network features

Commands execute based on the action argument, which controls CAN functions.

Moog Animatics Class 5 CANopen Guide Rev. H

Page 83 of 233

http://www.animatics.com/support/download-center.html

CANCTL(action, value)

Action = Description
0 Reserved; not used in CANopen firmware.
1 Reset the CAN communications controller in the motor and all

errors. Resets the CANopen protocol in the motor. The value
argument is ignored.

2 Reset the activity of the CANopen clock sync using the
high-resolution time stamp. The value argument is ignored.

3 This action uses the following value arguments:
l Value = 0: Reset the CANopen interpolation buffer
through user command. Leaves the buffer disabled to
prevent new data points.

l Value = 1: Reset the CANopen interpolation buffer
through user command. Sets buffer access to allow new
data points.

4 Use of this command is discouraged. It was previously
provided to force the motion mode of operation from a user
program. However, this functionality is now available through
existing SmartMotor commands such as MV, MP, MT, MC, MFR,
MSR and MD. For details on these commands, see the
SmartMotor™ Developer's Guide.

5 Set timeout for Combitronic. The value argument specifies the
time in milliseconds; it defaults to 30 (for 30 milliseconds).

12 This action uses the following value arguments:
l Value = 0: Clears bit 14 in the status word (6041h). This
is the default value at power-up of the motor.

l Value = 1: Sets bit 14 in the status word (6041h).
13 This action uses the following value arguments:

l Value = 0: Disables access to several objects listed
below. Clears "remote" bit 9 in the status word (6041h).

l Value = 1: Enables access to several objects listed
below. By default, this is the state at power-up of the
motor. Sets "remote" bit 9 in the status word (6041h).
The affected objects are:

o 6040h: Control Word
o 6060h: Modes of Operation
o 6071h: Target Torque
o 6081h: Profile Velocity (pp mode)
o 6083h: Profile Acceleration
o 6084h: Profile Deceleration
o 6087h: Torque Slope
o 60FBh: Subindex 1–8, 10 (PID parameters)
o 60FFh: Target Velocity

14 Enable/disable Combitronic time sync based on <value>:

0 - Disable
1 - Enable as slave (default at power up)
2 - Enable as master

Moog Animatics Class 5 CANopen Guide Rev. H

Page 84 of 233

NMT(address, command code)

Action = Description

15 Set timeout in milliseconds, where:

l Value=[time in milliseconds]
Default value is 1000 milliseconds

If the program encounters a PRINT statement while the buffer
is still waiting to be read, then the program pauses either for
the specified time or until the buffer is read—the pause lasts
only for the shorter condition. After this timeout, the string is
replaced by the output from the pending PRINT statement.

16a Sets the SDO command read/write timeout period. SDO reads
or writes initiated by the SmartMotor acting as CANopen mas-
ter will wait up to this time before declaring a timeout.
<value> sets time in msec; range from 10 to 1000. Default
value is 500.

17a,b Enables master commands: NMT, SDORD, SDOWR. For future
support of master functionality and features, certain number
ranges are reserved (see next table).

18 CSP mode sync priority control: 5.0.4.49 / 5.98.0.49 or later

0: Default, disables this special mode
1: Enable sync timing priority suppression (uncommon)

a. Requires firmware 5.x.4.30 or later; these are for CANopen only.
b. When not enabled, by default, the commands NMT, SDORD, SDOWR
will return an error instead of the intended action/value. Bit 0 of status
word 10 will be a 1 (true) when master is enabled.

Reserved values for CANCTL(17,value):

Value Description

-1 Disable master commands (default)

0-2 Reserved

3 Enable master commands; "simple mode" (no flying master, no monitoring of
nodes, no EMCY support, no LSS support)

4-9999 Reserved

NMT(address, command code)
For command codes and range of addresses, see NMT Control on page 27

NOTE: See CANCTL(17,x) on page 85, which is required to activate this command.

Transmit NMT message to network

The NMT command transmits an NMT message to the network; it can command a specific
slave or all slaves to enter the commanded state. The command uses the form:

NMT(target address, desired state)

Moog Animatics Class 5 CANopen Guide Rev. H

Page 85 of 233

SDORD(address, obj index, subindex, bytecount)

NMT(0,1) 'Tell everyone to go operational.
NMT(2,128) 'Tell motor 2 to go pre-operational.
x=CAN(4)
IF x!=0

' NMT command failed.
ENDIF

SDORD(address, obj index, subindex, bytecount)
Read value from SDO

The SDORD command gets (reads) the value from the specified SDO on a specified device.

NOTE: See CANCTL(17,x) on page 85, which is required to activate this command.

EXAMPLE: Read an SDO

x=SDORD(1, 24592,0,2) ' Read 2 bytes from address 1,
' object 0x6010, sub-index 0.

e=CAN(4) ' Get any error information

y=SDORD(1, 24608,0,2) ' Read 2 bytes from address 1,
' object 0x6020, sub-index 0.

ee=CAN(4) ' Get any error information

IF (e|ee)==0 ' Confirm the status of both SDO operations.
' Success

b=x ' Set some example variable according
c=y ' to the data received.
GOSUB(3) ' Some routine to take action when this data is valid.

ELSE
GOSUB(8) ' Go do something to deal with error when read fails.

ENDIF

SDOWR(address, obj index, subindex, bytecount, data)
Write value to SDO

The SDOWR command writes a value to the specified SDO on a specified device.

NOTE: See CANCTL(17,x) on page 85, which is required to activate this command.

EXAMPLE: Write an SDO

a=1234
SDOWR(1,9029,0,4,a) ' Write 4 bytes to address 1,
IF CAN(4)==0 ' Confirm the status of the most recent SDO operation.

' Success
GOSUB(4) ' Some routine to take action when the write succeeds.

ELSE
GOSUB(9) ' Go do something to deal with error when write fails.

ENDIF

Moog Animatics Class 5 CANopen Guide Rev. H

Page 86 of 233

Exceptions to NMT, SDORD and SDOWR Commands

Exceptions to NMT, SDORD and SDOWR Commands
Note the following exceptions when using the NMT, SDORD, SDOWR commands:

l No Combitronic version of these commands, i.e., there is no ":" operator form of the
command, for example:
 x=SDORD(…):3
is not allowed. Refer to each command's description in Part 2 of this guide.

l No monitoring the heartbeat of other network nodes.

l No special commands for sending or receiving PDOs. PDOs must be mapped to existing
objects to send or receive data as a slave device. Even the SmartMotor designated as a
master must configure its own PDO mappings.

NOTE: SmartMotors currently have 5 transmit and 5 receive PDOs.

l No capability to read EDS files. The user is responsible for writing a program with the
relevant object index, subindex and data type.

l No LSS host behavior is provided from the SmartMotor. Each slave device is expected to
have the properly configured address and baud rate. Each device must have a unique
address; all devices must use the same baud rate. Any need to set the baud rate or
address is not the responsibility of Moog Animatics.

l Only one SmartMotor may fill the master role. No other SmartMotors on the network
may issue these commands, because this implementation does not support a mult-
CANopen-master functionality.

l No support for master read/write of segmented or block SDO protocol. Only Expedited
(32-bit or smaller) data transmission are supported by the master functionality.

For more details and example programs, see the SmartMotor™ Developer's Guide.

Moog Animatics Class 5 CANopen Guide Rev. H

Page 87 of 233

Troubleshooting

Troubleshooting
The following table provides troubleshooting information for solving SmartMotor problems
that may be encountered when using CANopen. For additional support resources, see the
Moog Animatics Support page at:

http://www.animatics.com/support.html

Issue Cause Solution
CANopen Communication Issues
Master does not
recognize motor.

Motor not powered. Check Drive Status LED. If LED is not
lit, check wiring.

Disconnected or miswired
CAN connector, or broken
wiring between motors.

Check that CANopen connector is
correctly wired and connected to
motor. For details, see Connections,
Wiring and Status LEDs on page 34.

Wrong CAN BAUD rate. Set CBAUD setting and then reboot
motor. For details, see Address and
Baud Rate Commands on page 80.

Wrong CAN node ID
(address)

Set CADDR setting and then reboot
motor. For details, see Address and
Baud Rate Commands on page 80.

Wrong firmware Contact Moog Animatics for the correct
firmware version.

Wrong bus topology, or
wrong placement of
terminators.

The CAN bus should be a linear bus
topology. For details, see Connections,
Wiring and Status LEDs on page 34.

Line lengths or drop
lengths of CAN bus are too
long.

Decrease line and/or drop lengths. For
details, see Connections, Wiring and
Status LEDs on page 34.

Network flooded with
traffic.

Set master temporarily to the
Pre-Operational state. Stop user
programs in all motors. For details,
see NMT States on page 26.

Red CAN error LED. A warning or bus off
condition has occurred.

Check CAN Bus Network Fault LED — A
blinking red LED may indicate
occasional issues from any of the
causes listed above; a solid red LED
indicates that these issues have
occurred frequently, which causes the
motor to stop communicating (bus off
condition). In this case, the
SmartMotor must be reset after fixing
the cause of the problem.

Moog Animatics Class 5 CANopen Guide Rev. H

Page 88 of 233

http://www.animatics.com/support.html

Troubleshooting

Issue Cause Solution
Communication and Control Issues
Motor control power
light does not
illuminate.

Motor is equipped with the
DE option.

To energize control power, apply 24-48
VDC to pin 15 and ground to pin 14.

Motor has routed drive
power through drive-
enable pins.

Ensure cabling is correct and drive
power is not being delivered through
the 15-pin connector.

Motor does not
communicate with
SMI.

Transmit, receive, or
ground pins are not
connected correctly.

Ensure that transmit, receive and
ground are all connected properly to
the host PC.

Motor program is stuck in
a continuous loop or is
disabling communications.

To prevent the program from running
on power up, use the Communications
Lockup Wizard located on the SMI
software Communications menu.

Motor disconnects
from SMI
sporadically.

COM port buffer settings
are too high.

Adjust the COM port buffer settings to
their lowest values.

Poor connection on serial
cable.

Check the serial cable connections
and/or replace it.

Power supply unit (PSU)
brownout.

PSU may be too high-precision and/or
undersized for the application, which
causes it to brown-out during motion.
Make moves less aggressive, increase
PSU size, or change to a linear
unregulated power supply.

Motor stops
communicating over
serial port after
power reset, requires
re-detection.

Motor does not have its
address set in the user
program. NOTE: Serial
addresses are lost when
motor power is off or
reset.

Use the SADDR or ADDR= command
within the program to set the motor
address.

Red PWR SERVO light
illuminated.

Critical fault. To discover the source of the fault, use
the Motor View tool located on the SMI
software Tools menu.

Common Faults
Bus voltage fault. Bus voltage is either too

high or too low for
operation.

Check servo bus voltage. If motor uses
the DE power option, ensure that both
drive and control power are connected.

Overcurrent
occurred.

Motor intermittently drew
more than its rated level
of current. Does not cease
motion

Consider making motion less abrupt
with softer tuning parameters or
acceleration profiles.

Excessive
temperature fault.

Motor has exceeded
temperature limit of 85°C.
Motor will remain
unresponsive until it cools
down below 80°C.

Motor may be undersized or ambient
temperature is too high. Consider
adding heat sinks or forced air cooling
to the system.

Excessive position
error.

The motor's commanded
position and actual
position differ by more
than the user-supplied
error limit.

Increase error limit, decrease load, or
make movement less aggressive.

Moog Animatics Class 5 CANopen Guide Rev. H

Page 89 of 233

SDO Response Error Codes

Issue Cause Solution
Historical
positive/negative
hardware limit faults.

A limit switch was tripped
in the past.

Clear errors with the ZS command.

Motor does not have limit
switches attached.

Configure the motor to be used without
limit switches by setting their inputs as
general use.

Programming and SMI Issues
Several commands
not recognized during
compiling.

Compiler default firmware
version set incorrectly.

Use the "Compiler default firmware
version option" in the SMI software
Compile menu to select the default
firmware version closest to the motor
firmware version. In the SMI software,
view the motor firmware version by
right-clicking the motor and selecting
Properties.

SDO Response Error Codes

The following table shows the list of possible errors (abort codes) from a remote device as
defined by CANopen and/or remote device datasheet.

NOTE: Unlisted codes are reserved.

Code
Description

Hex Dec

0503 0000h 84082688 Toggle bit not alternated.

0504 0000h 84148224 SDO protocol timed out. Note that the SmartMotor uses the
RCAN(4) -1 value to indicate a timeout. Refer to Troubleshooting
on page 88.

0504 0001h 84148225 Client/server command specifier not valid or unknown.

0504 0002h 84148226 Invalid block size (block mode only).

0504 0003h 84148227 Invalid sequence number (block mode only).

0504 0004h 84148228 CRC error (block mode only).

0504 0005h 84148229 Out of memory.

0601 0000h 100728832 Unsupported access to an object.

0601 0001h 100728833 Attempt to read a write only object.

0601 0002h 100728834 Attempt to write a read only object.

0602 0000h 100794368 Object does not exist in the object dictionary.

0604 0041h 100925505 Object cannot be mapped to the PDO.

0604 0042h 100925506 Number and length of objects to be mapped would exceed PDO
length.

0604 0043h 100925507 General parameter incompatibility reason.

0604 0047h 100925511 General internal incompatibility in the device.

0606 0000h 101056512 Access failed due to a hardware error.

Moog Animatics Class 5 CANopen Guide Rev. H

Page 90 of 233

SDO Response Error Codes

Code
Description

Hex Dec

0607 0010h 101122064 Data type does not match—length of service parameter does not
match.

0607 0012h 101122066 Data type does not match—length of service parameter too high.

0607 0013h 101122067 Data type does not match—length of service parameter too low.

0609 0011h 101253137 Subindex does not exist.

0609 0030h 101253168 Value range of parameter exceeded (only for write access).

0609 0031h 101253169 Value of parameter written too high.

0609 0032h 101253170 Value of parameter written too low.

0609 0036h 101253174 Maximum value is less than minimum value.

0800 0000h 134217728 General error.

0800 0020h 134217760 Data cannot be transferred or stored to the application.

0800 0021h 134217761 Data cannot be transferred or stored to the application because
of local control.

0800 0022h 134217762 Data cannot be transferred or stored to the application because
of the present device state.

0800 0023h 134217763 Object dictionary dynamic generation fails or no object dic-
tionary is present (e.g., object dictionary is generated from file
and generation fails because of a file error).

Moog Animatics Class 5 CANopen Guide Rev. H

Page 91 of 233

Object Reference

Object Reference
This chapter provides details on the CANopen objects used with the Moog Animatics
SmartMotor. The following TOC groups the objects by category.

Object Categories 96

Communication Profile 97

Object 1000h: Device Type 99

Object 1001h: Error Register 100

Object 1005h: COB-ID SYNC 101

Object 1006h: Communication Cycle Period 103

Object 1008h: Manufacturer Device Name 105

Object 1009h: Manufacturer Hardware Version 106

Object 100Ah: Manufacturer Software Version 107

Object 1013h: High-Resolution Timestamp 108

Object 1017h: Producer Heartbeat Time 109

Object 1018h: Identity Object 110

Object 1200h: Server SDO Parameter 1 111

Object 1400h: Receive PDOCommunication Parameter 1 112

Object 1401h: Receive PDOCommunication Parameter 2 113

Object 1402h: Receive PDOCommunication Parameter 3 114

Object 1403h: Receive PDOCommunication Parameter 4 115

Object 1404h: Receive PDOCommunication Parameter 5 116

Object 1600h: Receive PDOMapping Parameter 1 117

Object 1601h: Receive PDOMapping Parameter 2 118

Object 1602h: Receive PDOMapping Parameter 3 119

Object 1603h: Receive PDOMapping Parameter 4 120

Object 1604h: Receive PDOMapping Parameter 5 121

Object 1800h: Transmit PDO Communication Parameter 1 122

Object 1801h: Transmit PDO Communication Parameter 2 123

Object 1802h: Transmit PDO Communication Parameter 3 124

Object 1803h: Transmit PDO Communication Parameter 4 125

Object 1804h: Transmit PDO Communication Parameter 5 126

Object 1A00h: Transmit PDOMapping Parameter 1 127

Object 1A01h: Transmit PDOMapping Parameter 2 128

Moog Animatics Class 5 CANopen Guide Rev. H

Page 92 of 233

Object Reference

Object 1A02h: Transmit PDOMapping Parameter 3 129

Object 1A03h: Transmit PDOMapping Parameter 4 130

Object 1A04h: Transmit PDOMapping Parameter 5 131

Manufacturer-Specific Profile 132

Object 2000h: Node Id 134

Object 2001h: Bit Rate Index 135

Object 2100h: Port Configuration 136

Object 2101h: Bit IO 137

Object 2200h: User EEPROM 138

Object 2201h: User Variable 139

Object 2202h: Set Position Origin 140

Object 2203h: Shift Position Origin 141

Object 2204h: Mappable 32-bit Variables 142

Object 2205h Negative Software Position Limit 143

Object 2206h Positive Software Position Limit 144

Object 2207h Encoder Modulo Limit 145

Object 2208h Encoder Follow Data 146

Object 2209h Encoder Follow Control 147

Start/Stop Capability 147

Object 220Ah MFMUL 149

Object 220Bh MFDIV 150

Object 220Ch MFA 151

Object 220Dh MFD 152

Object 2220h: 8-Bit Mappable Variables 153

Object 2221h: 16-Bit Mappable Variables 154

Object 2300h: Bus Voltage 155

Object 2301h: RMS Current 156

Object 2302h: Internal Temperature 157

Object 2303h: Internal Clock 158

Object 2304h: Motor Status 159

Object 2305h: Motor Control 168

Object 2306h: Motor Subroutine Index 169

Object 2307h: Sample Period 170

Object 2308h: Microsecond Clock 171

Object 2309h: GOSUB R2 172

Moog Animatics Class 5 CANopen Guide Rev. H

Page 93 of 233

Object Reference

Object 2400h: Interpolation Mode Status 173

Object 2401h: Buffer Control 174

Object 2402h: Buffer Setpoint 175

Object 2403h: Interpolation User Bits 176

Object 2404h: Interpolation Sample Clock 177

Object 2500h: Encapsulated SmartMotor Command 178

Drive and Motion Control Profile 179

Object 6040h: Control Word 181

Object 6041h: Status Word 183

Object 605Ah: Quick Stop Option Code 184

Object 605Dh: Halt Option Code 185

Object 605Eh: Fault Reaction Option Code 186

Object 6060h: Modes of Operation 187

Object 6061h: Modes of Operation Display 189

Object 6062h: Position Demand Value 190

Object 6063h: Position Actual Internal Value 191

Object 6064h: Position Actual Value 192

Object 6065h: Following Error Window 193

Object 606Bh: Velocity Demand Value 194

Object 606Ch: Velocity Actual Value 195

Object 6071h: Target Torque 196

Object 6074h: Torque Demand Value 197

Object 6077h: Torque Actual 198

Object 6079h: DC Link Circuit Voltage 199

Object 607Ah: Target Position 200

Object 607Ch: Home Offset 201

Object 6080h: Max Motor Speed 203

Object 6081h: Profile Velocity in PP Mode 204

Object 6083h: Profile Acceleration 205

Object 6084h: Profile Deceleration 206

Object 6085h: Quick Stop Deceleration 207

Object 6087h: Torque Slope 208

Object 608Fh: Position Encoder Resolution 209

Object 6098h: HomingMethod 210

Object 6099h: Homing Speeds 213

Moog Animatics Class 5 CANopen Guide Rev. H

Page 94 of 233

Object Reference

Object 609Ah: Homing Acceleration 214

Object 60C0h: Interpolation Sub-Mode Select 215

Object 60C1h: Interpolation Data Record 216

Object 60C2h: Interpolation Time Period 217

Object 60C4h: Interpolation Data Configuration 219

Object 60F4h: Following Error Actual Value 220

Object 60FBh: Position Control Parameter Set 221

Object 60FCh: Position Demand Internal Value 223

Object Description 223

Entry Description 223

Object 60FDh: Digital Inputs 224

Object 60FEh: Digital Outputs 226

Object 60FFh: Target Velocity 228

Object 6402h: Motor Type 229

Object 6502h: Supported Drive Modes 230

Object 67FFh: Single Device Type 231

Moog Animatics Class 5 CANopen Guide Rev. H

Page 95 of 233

Object Categories

Object Categories
The object descriptions are grouped by the following categories.

l Communication Profile on page 97

This set of objects in the range 1000h to 1FFFh implement the 301 specification for
general CANopen communications. This configures CANopen services and PDO
behavior.

l Manufacturer-Specific Profile on page 132

This set of objects in the range 2000h to 5FFFh implement manufacturer-specific
objects, which do not follow a common standard. They provide access to SmartMotor
commands and data.

l Drive and Motion Control Profile on page 179

This set of objects in the range 6000h to 67FFh implement the CiA 402 motion profile.
This provides access to common commands for controlling the motor.

Moog Animatics Class 5 CANopen Guide Rev. H

Page 96 of 233

Communication Profile

Communication Profile
This section describes the objects in the Communication Profile. This set of objects in the
range 1000h to 1FFFh implement the 301 specification for general CANopen communications.
This configures CANopen services and PDO behavior.

Object 1000h: Device Type 99

Object 1001h: Error Register 100

Object 1005h: COB-ID SYNC 101

Object 1006h: Communication Cycle Period 103

Object 1008h: Manufacturer Device Name 105

Object 1009h: Manufacturer Hardware Version 106

Object 100Ah: Manufacturer Software Version 107

Object 1013h: High-Resolution Timestamp 108

Object 1017h: Producer Heartbeat Time 109

Object 1018h: Identity Object 110

Object 1200h: Server SDO Parameter 1 111

Object 1400h: Receive PDO Communication Parameter 1 112

Object 1401h: Receive PDO Communication Parameter 2 113

Object 1402h: Receive PDO Communication Parameter 3 114

Object 1403h: Receive PDO Communication Parameter 4 115

Object 1404h: Receive PDO Communication Parameter 5 116

Object 1600h: Receive PDO Mapping Parameter 1 117

Object 1601h: Receive PDO Mapping Parameter 2 118

Object 1602h: Receive PDO Mapping Parameter 3 119

Object 1603h: Receive PDO Mapping Parameter 4 120

Object 1604h: Receive PDO Mapping Parameter 5 121

Object 1800h: Transmit PDO Communication Parameter 1 122

Object 1801h: Transmit PDO Communication Parameter 2 123

Object 1802h: Transmit PDO Communication Parameter 3 124

Object 1803h: Transmit PDO Communication Parameter 4 125

Object 1804h: Transmit PDO Communication Parameter 5 126

Moog Animatics Class 5 CANopen Guide Rev. H

Page 97 of 233

Communication Profile

Object 1A00h: Transmit PDO Mapping Parameter 1 127

Object 1A01h: Transmit PDO Mapping Parameter 2 128

Object 1A02h: Transmit PDO Mapping Parameter 3 129

Object 1A03h: Transmit PDO Mapping Parameter 4 130

Object 1A04h: Transmit PDO Mapping Parameter 5 131

Moog Animatics Class 5 CANopen Guide Rev. H

Page 98 of 233

Object 1000h: Device Type

Object 1000h: Device Type

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

1000h 000 Device Type 00000000h FFFFFFFFh 00020192h No Unsigned
32-bit

Read
Only

This object is required by CANopen to provide information about this device. The value of this
object does not change.

Bit Meaning

0–15 (16 bits) Device profile: 402 (192 hex)

16–23 (8 bits) Device type: 02 hex, to indicate a single instance of a servo drive

24–31 (8 bits) Device mode: 0 (manufacturer-specific / reserved)

Also, refer to Object 67FFh: Single Device Type on page 231.

Moog Animatics Class 5 CANopen Guide Rev. H

Page 99 of 233

Object 1001h: Error Register

Object 1001h: Error Register

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

1001h 000 Error Register 00h FFh No Unsigned
8-bit

Read
Only

The value read from this object contains a bit field with the following meaning:

Bit Function

0 General error

Includes any of the following:

l motion fault
l drive not ready
l CAN communication errors
l program command error
l program checksum error
l serial communication error

1–7 Reserved

Moog Animatics Class 5 CANopen Guide Rev. H

Page 100 of 233

Object 1005h: COB-ID SYNC

Object 1005h: COB-ID SYNC

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

1005h 000 COB-ID SYNC 00000001h FFFFFFFFh 00000080h No Unsigned
32-bit

Read
Write

This object specifies the COB-ID used for the Synchronization object (transmit or receive).

Bit Setting

0–10 COB-ID of the Synchronization object.

11–28 Set to 0.

29 Set to 0 for typical 11-bit identifiers.

30 Set to 0 to be a sync consumer (receive).

Set to a 1 to be a sync producer (transmit). Sync
message is produced in any operation mode: Stopped,
Operational and Pre-Operational.

NOTE: The Communication Cycle Period
object (1006h) must be set before setting this
bit to 1; otherwise, an SDO abort error will be
issued.

31 Set to 0 (not used).

For example, the motor is a:

l Sync consumer with the default sync COB-ID of 80h: 00000080h

l Sync producer with the default sync COB-ID of 80h: 40000080h

EXAMPLE: (for the complete program, see the example "CAN Bus - Time Sync Follow
Encoder" in Chapter 3 of the SmartMotor Developer's Guide)

'++++ HEX Coded Objects for CAN +++++
. . .
#define x1005 4101 ' Object 1005h: COB-ID Sync
#define x1006 4102 ' Object 1006h: Communication Cycle Period
. . .
mmm=1 ' network master's address
fff=mmm ' following motor's address. In this demo, it is the network

' master. But you can make it a 3rd-party
eee=2 ' encoders address
. . .

NMT(0,128) GOSUB10 ' Network broadcast to go pre-operational state.
' Setup the sync producer/consumers and set timebase. Provides time sync so
' motor clocks keep in step, and data is transmitted/accepted on sync also.
SDOWR(mmm,x1006,0,4,10000) GOSUB10 ' define Cycle period object 0x1006:0,

' size 4, 10ms
SDOWR(eee,x1006,0,4,10000) GOSUB10 ' define Cycle period object 0x1006:0,

' size 4, 10ms
IF mmm!=fff
' If follow motor is not the master.

Moog Animatics Class 5 CANopen Guide Rev. H

Page 101 of 233

Object 1005h: COB-ID SYNC

SDOWR(fff,x1006,0,4,10000) GOSUB10 ' define Cycle period object
' 0x1006:0, size 4, 10ms

ENDIF
SDOWR(mmm,x1005,0,4,128) GOSUB10 ' define Cycle ID x0000 0080 (required

' to avoid error in next line.)
SDOWR(mmm,x1005,0,4,1073741952) GOSUB10 ' define Cycle ID, producer

' x4000 0080
SDOWR(eee,x1005,0,4,128) GOSUB10 ' define Cycle ID, consumer x0000 0080
IF mmm!=fff

' If follow motor is not the master.
SDOWR(fff,x1005,0,4,128) GOSUB10 ' define Cycle ID, consumer x0000 0080

ENDIF
. . .
C10

' Code to check for CAN error and display it
. . .

RETURN

Moog Animatics Class 5 CANopen Guide Rev. H

Page 102 of 233

Object 1006h: Communication Cycle Period

Object 1006h: Communication Cycle Period

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

1006h 000 Communication Cycle Period 00000000h FFFFFFFFh 00000000h No Unsigned
32-bit

Read
Write

This object defines the communication cycle period in microseconds for transmission of the
sync message. Set to 0 to disable the sync message transmission. Also, refer to Object
1005h: COB-ID SYNC on page 101.

For certain applications, this object can be used to provide the following features:

l Network encoder following: When receiving encoder data, it will arrive at a rate of
several milliseconds between samples. For smooth motion, the SmartMotor must
interpolate this data internally at a faster rate to take smaller steps per PID cycle. The
motor will know the time interval based on object 1006h, cycle period.

l Synchronization: When the SmartMotors should all have a common timebase, this
allows data to be produced and consumed one-for-one. The arrival time of sync packets
from the master and the value set as the cycle period by object 1006h will coordinate
this behavior.

EXAMPLE: (for the complete program, see the example "CAN Bus - Time Sync Follow
Encoder" in Chapter 3 of the SmartMotor Developer's Guide)

'++++ HEX Coded Objects for CAN +++++
. . .
#define x1005 4101 ' Object 1005h: COB-ID Sync
#define x1006 4102 ' Object 1006h: Communication Cycle Period
. . .
mmm=1 ' network master's address
fff=mmm ' following motor's address. In this demo, it is the network

' master. But you can make it a 3rd-party
eee=2 ' encoders address
. . .

NMT(0,128) GOSUB10 ' Network broadcast to go pre-operational state.
' Setup the sync producer/consumers and set timebase. Provides time sync so
' motor clocks keep in step, and data is transmitted/accepted on sync also.
SDOWR(mmm,x1006,0,4,10000) GOSUB10 ' define Cycle period object 0x1006:0,

' size 4, 10ms
SDOWR(eee,x1006,0,4,10000) GOSUB10 ' define Cycle period object 0x1006:0,

' size 4, 10ms
IF mmm!=fff
' If follow motor is not the master.

SDOWR(fff,x1006,0,4,10000) GOSUB10 ' define Cycle period object
' 0x1006:0, size 4, 10ms

ENDIF
SDOWR(mmm,x1005,0,4,128) GOSUB10 ' define Cycle ID x0000 0080 (required

' to avoid error in next line.)
SDOWR(mmm,x1005,0,4,1073741952) GOSUB10 ' define Cycle ID, producer

' x4000 0080
SDOWR(eee,x1005,0,4,128) GOSUB10 ' define Cycle ID, consumer x0000 0080

Moog Animatics Class 5 CANopen Guide Rev. H

Page 103 of 233

Object 1006h: Communication Cycle Period

IF mmm!=fff
' If follow motor is not the master.
SDOWR(fff,x1005,0,4,128) GOSUB10 ' define Cycle ID, consumer x0000 0080

ENDIF
. . .
C10

' Code to check for CAN error and display it
. . .

RETURN

Moog Animatics Class 5 CANopen Guide Rev. H

Page 104 of 233

Object 1008h: Manufacturer Device Name

Object 1008h: Manufacturer Device Name

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

1008h 000 Manufacturer Device Name SMClass5 No String Read
Only

This object contains the manufacturer device name. This value does not change and reports
as:

SMClass5

Moog Animatics Class 5 CANopen Guide Rev. H

Page 105 of 233

Object 1009h: Manufacturer Hardware Version

Object 1009h: Manufacturer Hardware Version

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

1009h 000 Manufacturer Hardware Ver-
sion 01.00 No String Read

Only

This object contains the device hardware version. This value does not change and reports as:

01.00

Moog Animatics Class 5 CANopen Guide Rev. H

Page 106 of 233

Object 100Ah: Manufacturer Software Version

Object 100Ah: Manufacturer Software Version

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

100Ah 000 Manufacturer Software Ver-
sion No String Read

Only

This object contains the firmware version of the motor. It reports a string in the format:

5.x.y.z

Where x can be:

l 0 for CANopen D-style motor

l 98 for CANopen M-style motor

The y and z positions represent the major and minor software release version, respectively.

The string is 16 bytes long; it is padded with null characters at the end.

Similar SmartMotor Commands: RFW, RSP (firmware) info

Moog Animatics Class 5 CANopen Guide Rev. H

Page 107 of 233

Object 1013h: High-Resolution Timestamp

Object 1013h: High-Resolution Timestamp

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

1013h 000 High-Resolution Timestamp 00000000h FFFFFFFFh 00000000h Yes Unsigned
32-bit

Read
Write

This object contains a timestamp with a resolution of 1 microsecond. It can be mapped into a
PDO in order to define a high-resolution timestamp.

Typically, one motor is configured to transmit its object 1013, and one or more other motors
receive this value for the purpose of synchronization.

When this object is read, it is the captured value of the high-resolution timer at the most
recent sync; therefore, it is not the current value.

NOTE: The captured value is not the current value of the high-resolution timer.

When this object is written, it is used to skew the motor's internal timing to stay synchronized
with other motors.

For more details, see Synchronization on page 66.

Moog Animatics Class 5 CANopen Guide Rev. H

Page 108 of 233

Object 1017h: Producer Heartbeat Time

Object 1017h: Producer Heartbeat Time

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

1017h 000 Producer Heartbeat Time 0000h FFFFh 0000h No Unsigned
16-bit

Read
Write

This object defines the cycle time of the heartbeat transmission from the motor in
milliseconds. Transmission begins as soon as the value is set. If the value is 0, nothing is
transmitted.

The heartbeat contains information that tells the master (or other devices) that the heartbeat
came from this device and what network state it is in (Operational, Pre-Operational,
Stopped).

Moog Animatics Class 5 CANopen Guide Rev. H

Page 109 of 233

Object 1018h: Identity Object

Object 1018h: Identity Object

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

1018h 000 Number of Entries 01h 04h 04h No Unsigned
8-bit

Read
Only

1018h 001 Vendor ID 00000000h FFFFFFFFh 00000226h No Unsigned
32-bit

Read
Only

1018h 002 Product Code 00000000h FFFFFFFFh 00000003h No Unsigned
32-bit

Read
Only

1018h 003 Revision Number 00000000h FFFFFFFFh Revision
number No Unsigned

32-bit
Read
Only

1018h 004 Serial Number 00000000h FFFFFFFFh Motor serial
number No Unsigned

32-bit
Read
Only

This object contains general information about the device. These values are constant and do
not change.

l Subindex 1 contains the Vendor ID number assigned to Moog Animatics: 226h.

l Subindex 2 contains the manufacturer-specific product code (varies by product):

Product Code

Class 5 3

Class 6 EtherCAT 1

Class 6 SL17 5

l Subindex 3 contains the revision number:

o Bit 31–16 is the major revision number

o Bit 15–0 is the minor revision number

l Subindex 4 contains the unique serial number of this SmartMotor. This number is the
same as the serial number printed on the SmartMotor label, except that the leading
alpha character is dropped. Only the 24-bit numeric digits are reported.

Moog Animatics Class 5 CANopen Guide Rev. H

Page 110 of 233

Object 1200h: Server SDO Parameter 1

Object 1200h: Server SDO Parameter 1

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

1200h 000 Number of Entries 02h 02h 02h No Unsigned
8-bit

Read
Only

1200h 001 COB-ID Client to Server 00000600h BFFFFFFFh 00000600
+ node ID No Unsigned

32-bit
Read
Only

1200h 002 COB-ID Server to Client 00000580h BFFFFFFFh 00000580
+ node ID No Unsigned

32-bit
Read
Only

These are the COB-ID values used for SDO communications from the CANopen master to the
SmartMotor. The value is automatically updated based on the node ID (motor address)
according to the default connection set. This information cannot be changed; it is provided for
informative purposes only.

Moog Animatics Class 5 CANopen Guide Rev. H

Page 111 of 233

Object 1400h: Receive PDO Communication Parameter 1

Object 1400h: Receive PDO Communication Parameter 1

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

1400h 000 Number of Entries 02h 05h 05h No Unsigned
8-bit

Read
Only

1400h 001 COB-ID 00000001h FFFFFFFFh 00000200h
+ node ID No Unsigned

32-bit
Read
Write

1400h 002 Transmission Type 00h FFh FFh No Unsigned
8-bit

Read
Write

1400h 003 Inhibit Time 0000h FFFFh 0000h No Unsigned
16-bit

Read
Write

1400h 004 Compatibility Entry 00h FFh 00h No Unsigned
8-bit

Read
Write

1400h 005 Event Timer 0000h FFFFh 0000h No Unsigned
16-bit

Read
Write

This object controls the behavior of receive PDO 1.

For the following items, refer to the table Communications Parameters Objects on page 74:

l Sub-index 0: Number of subindex objects in this object (5)

l Sub-index 1: COB-ID used for this PDO; when set, bit 31 is used to disable the PDO

l Sub-index 2: Transmission type

l Sub-index 3: Inhibit time in units of 100 microseconds

l Sub-index 4: Not used; use the default setting

l Sub-index 5: Event time, in milliseconds, for transmit PDOs type 254 and 255

Moog Animatics Class 5 CANopen Guide Rev. H

Page 112 of 233

Object 1401h: Receive PDO Communication Parameter 2

Object 1401h: Receive PDO Communication Parameter 2

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

1401h 000 Number of Entries 02h 05h 05h No Unsigned
8-bit

Read
Only

1401h 001 COB-ID 00000001h FFFFFFFFh 80000300h
+ node ID No Unsigned

32-bit
Read
Write

1401h 002 Transmission Type 00h FFh FFh No Unsigned
8-bit

Read
Write

1401h 003 Inhibit Time 0000h FFFFh 0000h No Unsigned
16-bit

Read
Write

1401h 004 Compatibility Entry 00h FFh 00h No Unsigned
8-bit

Read
Write

1401h 005 Event Timer 0000h FFFFh 0000h No Unsigned
16-bit

Read
Write

This object controls the behavior of receive PDO 2.

For the following items, refer to the table Communications Parameters Objects on page 74:

l Sub-index 0: Number of subindex objects in this object (5)

l Sub-index 1: COB-ID used for this PDO; when set, bit 31 is used to disable the PDO

l Sub-index 2: Transmission type

l Sub-index 3: Inhibit time in units of 100 microseconds

l Sub-index 4: Not used; use the default setting

l Sub-index 5: Event time, in milliseconds, for transmit PDOs type 254 and 255

Moog Animatics Class 5 CANopen Guide Rev. H

Page 113 of 233

Object 1402h: Receive PDO Communication Parameter 3

Object 1402h: Receive PDO Communication Parameter 3

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

1402h 000 Number of Entries 02h 05h 05h No Unsigned
8-bit

Read
Only

1402h 001 COB-ID 00000001h FFFFFFFFh 80000400h
+ node ID No Unsigned

32-bit
Read
Write

1402h 002 Transmission Type 00h FFh FFh No Unsigned
8-bit

Read
Write

1402h 003 Inhibit Time 0000h FFFFh 0000h No Unsigned
16-bit

Read
Write

1402h 004 Compatibility Entry 00h FFh 00h No Unsigned
8-bit

Read
Write

1402h 005 Event Timer 0000h FFFFh 0000h No Unsigned
16-bit

Read
Write

This object controls the behavior of receive PDO 3.

For the following items, refer to the table Communications Parameters Objects on page 74:

l Sub-index 0: Number of subindex objects in this object (5)

l Sub-index 1: COB-ID used for this PDO; when set, bit 31 is used to disable the PDO

l Sub-index 2: Transmission type

l Sub-index 3: Inhibit time in units of 100 microseconds

l Sub-index 4: Not used; use the default setting

l Sub-index 5: Event time, in milliseconds, for transmit PDOs type 254 and 255

Moog Animatics Class 5 CANopen Guide Rev. H

Page 114 of 233

Object 1403h: Receive PDO Communication Parameter 4

Object 1403h: Receive PDO Communication Parameter 4

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

1403h 000 Number of Entries 02h 05h 05h No Unsigned
8-bit

Read
Only

1403h 001 COB-ID 00000001h FFFFFFFFh 80000500h
+ node ID No Unsigned

32-bit
Read
Write

1403h 002 Transmission Type 00h FFh FFh No Unsigned
8-bit

Read
Write

1403h 003 Inhibit Time 0000h FFFFh 0000h No Unsigned
16-bit

Read
Write

1403h 004 Compatibility Entry 00h FFh 00h No Unsigned
8-bit

Read
Write

1403h 005 Event Timer 0000h FFFFh 0000h No Unsigned
16-bit

Read
Write

This object controls the behavior of receive PDO 4.

For the following items, refer to the table Communications Parameters Objects on page 74:

l Sub-index 0: Number of subindex objects in this object (5)

l Sub-index 1: COB-ID used for this PDO; when set, bit 31 is used to disable the PDO

l Sub-index 2: Transmission type

l Sub-index 3: Inhibit time in units of 100 microseconds

l Sub-index 4: Not used; use the default setting

l Sub-index 5: Event time, in milliseconds, for transmit PDOs type 254 and 255

Moog Animatics Class 5 CANopen Guide Rev. H

Page 115 of 233

Object 1404h: Receive PDO Communication Parameter 5

Object 1404h: Receive PDO Communication Parameter 5

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

1404h 000 Number of Entries 02h 05h 05h No Unsigned
8-bit

Read
Only

1404h 001 COB-ID 00000001h FFFFFFFFh 80000000h No Unsigned
32-bit

Read
Write

1404h 002 Transmission Type 00h FFh FFh No Unsigned
8-bit

Read
Write

1404h 003 Inhibit Time 0000h FFFFh 0000h No Unsigned
16-bit

Read
Write

1404h 004 Compatibility Entry 00h FFh 00h No Unsigned
8-bit

Read
Write

1404h 005 Event Timer 0000h FFFFh 0000h No Unsigned
16-bit

Read
Write

This object controls the behavior of receive PDO 5.

For the following items, refer to the table Communications Parameters Objects on page 74:

l Sub-index 0: Number of subindex objects in this object (5)

l Sub-index 1: COB-ID used for this PDO; when set, bit 31 is used to disable the PDO

l Sub-index 2: Transmission type

l Sub-index 3: Inhibit time in units of 100 microseconds

l Sub-index 4: Not used; use the default setting

l Sub-index 5: Event time, in milliseconds, for transmit PDOs type 254 and 255

Moog Animatics Class 5 CANopen Guide Rev. H

Page 116 of 233

Object 1600h: Receive PDO Mapping Parameter 1

Object 1600h: Receive PDO Mapping Parameter 1

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

1600h 000 Number of Entries 00h 04h 01h No Unsigned
8-bit

Read
Write

1600h 001 Mapping Entry 1 00000000h FFFFFFFFh 60400010h No Unsigned
32-bit

Read
Write

1600h 002 Mapping Entry 2 00000000h FFFFFFFFh 00000000h No Unsigned
32-bit

Read
Write

1600h 003 Mapping Entry 3 00000000h FFFFFFFFh 00000000h No Unsigned
32-bit

Read
Write

1600h 004 Mapping Entry 4 00000000h FFFFFFFFh 00000000h No Unsigned
32-bit

Read
Write

This object controls which objects are mapped into receive PDO 1.

For the following items, refer to Mapping Parameters Objects on page 75:

l Subindex 0: Number of valid subindex objects in this object. This is set according to the
filled mapping entries starting from subindex 1.

l Subindexes 1–4: These provide information about the object mapped in this PDO. They
contain the indexes, the subindexes and the lengths of the mapped object. Fill these
starting from subindex 1. The structure is:

Bit Meaning

Bits 16–31 (16 bit) Index of the object
to map

Bits 8–15 (8 bit) Subindex of the
object to map

Bits 0–7 (8 bit) Length of the object
(in bits)

Moog Animatics Class 5 CANopen Guide Rev. H

Page 117 of 233

Object 1601h: Receive PDO Mapping Parameter 2

Object 1601h: Receive PDO Mapping Parameter 2

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

1601h 000 Number of Entries 00h 04h 02h No Unsigned
8-bit

Read
Write

1601h 001 Mapping Entry 1 00000000h FFFFFFFFh 60400010h No Unsigned
32-bit

Read
Write

1601h 002 Mapping Entry 2 00000000h FFFFFFFFh 60600008h No Unsigned
32-bit

Read
Write

1601h 003 Mapping Entry 3 00000000h FFFFFFFFh 00000000h No Unsigned
32-bit

Read
Write

1601h 004 Mapping Entry 4 00000000h FFFFFFFFh 00000000h No Unsigned
32-bit

Read
Write

This object controls which objects are mapped into receive PDO 2.

For the following items, refer to Mapping Parameters Objects on page 75:

l Subindex 0: Number of valid subindex objects in this object. This is set according to the
filled mapping entries starting from subindex 1.

l Subindexes 1–4: These provide information about the object mapped in this PDO. They
contain the indexes, the subindexes and the lengths of the mapped object. Fill these
starting from subindex 1. The structure is:

Bit Meaning

Bits 16–31 (16 bit) Index of the object
to map

Bits 8–15 (8 bit) Subindex of the
object to map

Bits 0–7 (8 bit) Length of the object
(in bits)

Moog Animatics Class 5 CANopen Guide Rev. H

Page 118 of 233

Object 1602h: Receive PDO Mapping Parameter 3

Object 1602h: Receive PDO Mapping Parameter 3

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

1602h 000 Number of Entries 00h 04h 02h No Unsigned
8-bit

Read
Write

1602h 001 Mapping Entry 1 00000000h FFFFFFFFh 60400010h No Unsigned
32-bit

Read
Write

1602h 002 Mapping Entry 2 00000000h FFFFFFFFh 607A0020h No Unsigned
32-bit

Read
Write

1602h 003 Mapping Entry 3 00000000h FFFFFFFFh 00000000h No Unsigned
32-bit

Read
Write

1602h 004 Mapping Entry 4 00000000h FFFFFFFFh 00000000h No Unsigned
32-bit

Read
Write

This object controls which objects are mapped into receive PDO 3.

For the following items, refer to Mapping Parameters Objects on page 75:

l Subindex 0: Number of valid subindex objects in this object. This is set according to the
filled mapping entries starting from subindex 1.

l Subindexes 1–4: These provide information about the object mapped in this PDO. They
contain the indexes, the subindexes and the lengths of the mapped object. Fill these
starting from subindex 1. The structure is:

Bit Meaning

Bits 16–31 (16 bit) Index of the object
to map

Bits 8–15 (8 bit) Subindex of the
object to map

Bits 0–7 (8 bit) Length of the object
(in bits)

Moog Animatics Class 5 CANopen Guide Rev. H

Page 119 of 233

Object 1603h: Receive PDO Mapping Parameter 4

Object 1603h: Receive PDO Mapping Parameter 4

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

1603h 000 Number of Entries 00h 04h 02h No Unsigned
8-bit

Read
Write

1603h 001 Mapping Entry 1 00000000h FFFFFFFFh 60400010h No Unsigned
32-bit

Read
Write

1603h 002 Mapping Entry 2 00000000h FFFFFFFFh 60FF0020h No Unsigned
32-bit

Read
Write

1603h 003 Mapping Entry 3 00000000h FFFFFFFFh 00000000h No Unsigned
32-bit

Read
Write

1603h 004 Mapping Entry 4 00000000h FFFFFFFFh 00000000h No Unsigned
32-bit

Read
Write

This object controls which objects are mapped into receive PDO 4.

For the following items, refer to Mapping Parameters Objects on page 75:

l Subindex 0: Number of valid subindex objects in this object. This is set according to the
filled mapping entries starting from subindex 1.

l Subindexes 1–4: These provide information about the object mapped in this PDO. They
contain the indexes, the subindexes and the lengths of the mapped object. Fill these
starting from subindex 1. The structure is:

Bit Meaning

Bits 16–31 (16 bit) Index of the object
to map

Bits 8–15 (8 bit) Subindex of the
object to map

Bits 0–7 (8 bit) Length of the object
(in bits)

Moog Animatics Class 5 CANopen Guide Rev. H

Page 120 of 233

Object 1604h: Receive PDO Mapping Parameter 5

Object 1604h: Receive PDO Mapping Parameter 5

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

1604h 000 Number of Entries 00h 04h 02h No Unsigned
8-bit

Read
Write

1604h 001 Mapping Entry 1 00000000h FFFFFFFFh 60400010h No Unsigned
32-bit

Read
Write

1604h 002 Mapping Entry 2 00000000h FFFFFFFFh 60710010h No Unsigned
32-bit

Read
Write

1604h 003 Mapping Entry 3 00000000h FFFFFFFFh 00000000h No Unsigned
32-bit

Read
Write

1604h 004 Mapping Entry 4 00000000h FFFFFFFFh 00000000h No Unsigned
32-bit

Read
Write

This object controls which objects are mapped into receive PDO 5.

For the following items, refer to Mapping Parameters Objects on page 75:

l Subindex 0: Number of valid subindex objects in this object. This is set according to the
filled mapping entries starting from subindex 1.

l Subindexes 1–4: These provide information about the object mapped in this PDO. They
contain the indexes, the subindexes and the lengths of the mapped object. Fill these
starting from subindex 1. The structure is:

Bit Meaning

Bits 16–31 (16 bit) Index of the object
to map

Bits 8–15 (8 bit) Subindex of the
object to map

Bits 0–7 (8 bit) Length of the object
(in bits)

Moog Animatics Class 5 CANopen Guide Rev. H

Page 121 of 233

Object 1800h: Transmit PDO Communication Parameter 1

Object 1800h: Transmit PDO Communication Parameter 1

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

1800h 000 Number of Entries 02h 05h 05h No Unsigned
8-bit

Read
Only

1800h 001 COB-ID 00000001h FFFFFFFFh 40000180h
+ node ID No Unsigned

32-bit
Read
Write

1800h 002 Transmission Type 00h FFh FFh No Unsigned
8-bit

Read
Write

1800h 003 Inhibit Time 0000h FFFFh 0000h No Unsigned
16-bit

Read
Write

1800h 004 Compatibility Entry 00h FFh 00h No Unsigned
8-bit

Read
Write

1800h 005 Event Timer 0000h FFFFh 0000h No Unsigned
16-bit

Read
Write

This object controls the behavior of transmit PDO 1.

For the following items, refer to the table Communications Parameters Objects on page 74:

l Sub-index 0: Number of subindex objects in this object (5)

l Sub-index 1: COB-ID used for this PDO; when set, bit 31 is used to disable the PDO

l Sub-index 2: Transmission type

l Sub-index 3: Inhibit time in units of 100 microseconds

l Sub-index 4: Not used; use the default setting

l Sub-index 5: Event time, in milliseconds, for transmit PDOs type 254 and 255

Moog Animatics Class 5 CANopen Guide Rev. H

Page 122 of 233

Object 1801h: Transmit PDO Communication Parameter 2

Object 1801h: Transmit PDO Communication Parameter 2

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

1801h 000 Number of Entries 02h 05h 05h No Unsigned
8-bit

Read
Only

1801h 001 COB-ID 00000001h FFFFFFFFh C0000280h
+ node ID No Unsigned

32-bit
Read
Write

1801h 002 Transmission Type 00h FFh FFh No Unsigned
8-bit

Read
Write

1801h 003 Inhibit Time 0000h FFFFh 0000h No Unsigned
16-bit

Read
Write

1801h 004 Compatibility Entry 00h FFh 00h No Unsigned
8-bit

Read
Write

1801h 005 Event Timer 0000h FFFFh 0000h No Unsigned
16-bit

Read
Write

This object controls the behavior of transmit PDO 2.

For the following items, refer to the table Communications Parameters Objects on page 74:

l Sub-index 0: Number of subindex objects in this object (5)

l Sub-index 1: COB-ID used for this PDO; when set, bit 31 is used to disable the PDO

l Sub-index 2: Transmission type

l Sub-index 3: Inhibit time in units of 100 microseconds

l Sub-index 4: Not used; use the default setting

l Sub-index 5: Event time, in milliseconds, for transmit PDOs type 254 and 255

Moog Animatics Class 5 CANopen Guide Rev. H

Page 123 of 233

Object 1802h: Transmit PDO Communication Parameter 3

Object 1802h: Transmit PDO Communication Parameter 3

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

1802h 000 Number of Entries 02h 05h 05h No Unsigned
8-bit

Read
Only

1802h 001 COB-ID 00000001h FFFFFFFFh C0000380h
+ node ID No Unsigned

32-bit
Read
Write

1802h 002 Transmission Type 00h FFh 01h No Unsigned
8-bit

Read
Write

1802h 003 Inhibit Time 0000h FFFFh 0000h No Unsigned
16-bit

Read
Write

1802h 004 Compatibility Entry 00h FFh 00h No Unsigned
8-bit

Read
Write

1802h 005 Event Timer 0000h FFFFh 0000h No Unsigned
16-bit

Read
Write

This object controls the behavior of transmit PDO 3.

For the following items, refer to the table Communications Parameters Objects on page 74:

l Sub-index 0: Number of subindex objects in this object (5)

l Sub-index 1: COB-ID used for this PDO; when set, bit 31 is used to disable the PDO

l Sub-index 2: Transmission type

l Sub-index 3: Inhibit time in units of 100 microseconds

l Sub-index 4: Not used; use the default setting

l Sub-index 5: Event time, in milliseconds, for transmit PDOs type 254 and 255

Moog Animatics Class 5 CANopen Guide Rev. H

Page 124 of 233

Object 1803h: Transmit PDO Communication Parameter 4

Object 1803h: Transmit PDO Communication Parameter 4

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

1803h 000 Number of Entries 02h 05h 05h No Unsigned
8-bit

Read
Only

1803h 001 COB-ID 00000001h FFFFFFFFh C0000480h
+ node ID No Unsigned

32-bit
Read
Write

1803h 002 Transmission Type 00h FFh 01h No Unsigned
8-bit

Read
Write

1803h 003 Inhibit Time 0000h FFFFh 0000h No Unsigned
16-bit

Read
Write

1803h 004 Compatibility Entry 00h FFh 00h No Unsigned
8-bit

Read
Write

1803h 005 Event Timer 0000h FFFFh 0000h No Unsigned
16-bit

Read
Write

This object controls the behavior of transmit PDO 4.

For the following items, refer to the table Communications Parameters Objects on page 74:

l Sub-index 0: Number of subindex objects in this object (5)

l Sub-index 1: COB-ID used for this PDO; when set, bit 31 is used to disable the PDO

l Sub-index 2: Transmission type

l Sub-index 3: Inhibit time in units of 100 microseconds

l Sub-index 4: Not used; use the default setting

l Sub-index 5: Event time, in milliseconds, for transmit PDOs type 254 and 255

Moog Animatics Class 5 CANopen Guide Rev. H

Page 125 of 233

Object 1804h: Transmit PDO Communication Parameter 5

Object 1804h: Transmit PDO Communication Parameter 5

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

1804h 000 Number of Entries 02h 05h 05h No Unsigned
8-bit

Read
Only

1804h 001 COB-ID 00000001h FFFFFFFFh C0000000h No Unsigned
32-bit

Read
Write

1804h 002 Transmission Type 00h FFh 01h No Unsigned
8-bit

Read
Write

1804h 003 Inhibit Time 0000h FFFFh 0000h No Unsigned
16-bit

Read
Write

1804h 004 Compatibility Entry 00h FFh 00h No Unsigned
8-bit

Read
Write

1804h 005 Event Timer 0000h FFFFh 0000h No Unsigned
16-bit

Read
Write

This object controls the behavior of transmit PDO 5.

For the following items, refer to the table Communications Parameters Objects on page 74:

l Sub-index 0: Number of subindex objects in this object (5)

l Sub-index 1: COB-ID used for this PDO; when set, bit 31 is used to disable the PDO

l Sub-index 2: Transmission type

l Sub-index 3: Inhibit time in units of 100 microseconds

l Sub-index 4: Not used; use the default setting

l Sub-index 5: Event time, in milliseconds, for transmit PDOs type 254 and 255

Moog Animatics Class 5 CANopen Guide Rev. H

Page 126 of 233

Object 1A00h: Transmit PDO Mapping Parameter 1

Object 1A00h: Transmit PDO Mapping Parameter 1

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

1A00h 000 Number of Entries 00h 04h 01h No Unsigned
8-bit

Read
Write

1A00h 001 Mapping Entry 1 00000000h FFFFFFFFh 60410010h No Unsigned
32-bit

Read
Write

1A00h 002 Mapping Entry 2 00000000h FFFFFFFFh 00000000h No Unsigned
32-bit

Read
Write

1A00h 003 Mapping Entry 3 00000000h FFFFFFFFh 00000000h No Unsigned
32-bit

Read
Write

1A00h 004 Mapping Entry 4 00000000h FFFFFFFFh 00000000h No Unsigned
32-bit

Read
Write

This object controls which objects are mapped into transmit PDO 1.

For the following items, refer to Mapping Parameters Objects on page 75:

l Subindex 0: Number of valid subindex objects in this object. This is set according to the
filled mapping entries starting from subindex 1.

l Subindexes 1–4: These provide information about the object mapped in this PDO. They
contain the indexes, the subindexes and the lengths of the mapped object. Fill these
starting from subindex 1. The structure is:

Bit Meaning

Bits 16–31 (16 bit) Index of the object
to map

Bits 8–15 (8 bit) Subindex of the
object to map

Bits 0–7 (8 bit) Length of the object
(in bits)

Moog Animatics Class 5 CANopen Guide Rev. H

Page 127 of 233

Object 1A01h: Transmit PDO Mapping Parameter 2

Object 1A01h: Transmit PDO Mapping Parameter 2

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

1A01h 000 Number of Entries 00h 04h 02h No Unsigned
8-bit

Read
Write

1A01h 001 Mapping Entry 1 00000000h FFFFFFFFh 60410010h No Unsigned
32-bit

Read
Write

1A01h 002 Mapping Entry 2 00000000h FFFFFFFFh 60610008h No Unsigned
32-bit

Read
Write

1A01h 003 Mapping Entry 3 00000000h FFFFFFFFh 00000000h No Unsigned
32-bit

Read
Write

1A01h 004 Mapping Entry 4 00000000h FFFFFFFFh 00000000h No Unsigned
32-bit

Read
Write

This object controls which objects are mapped into transmit PDO 2.

For the following items, refer to Mapping Parameters Objects on page 75:

l Subindex 0: Number of valid subindex objects in this object. This is set according to the
filled mapping entries starting from subindex 1.

l Subindexes 1–4: These provide information about the object mapped in this PDO. They
contain the indexes, the subindexes and the lengths of the mapped object. Fill these
starting from subindex 1. The structure is:

Bit Meaning

Bits 16–31 (16 bit) Index of the object
to map

Bits 8–15 (8 bit) Subindex of the
object to map

Bits 0–7 (8 bit) Length of the object
(in bits)

Moog Animatics Class 5 CANopen Guide Rev. H

Page 128 of 233

Object 1A02h: Transmit PDO Mapping Parameter 3

Object 1A02h: Transmit PDO Mapping Parameter 3

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

1A02h 000 Number of Entries 00h 04h 02h No Unsigned
8-bit

Read
Write

1A02h 001 Mapping Entry 1 00000000h FFFFFFFFh 60410010h No Unsigned
32-bit

Read
Write

1A02h 002 Mapping Entry 2 00000000h FFFFFFFFh 60640020h No Unsigned
32-bit

Read
Write

1A02h 003 Mapping Entry 3 00000000h FFFFFFFFh 00000000h No Unsigned
32-bit

Read
Write

1A02h 004 Mapping Entry 4 00000000h FFFFFFFFh 00000000h No Unsigned
32-bit

Read
Write

This object controls which objects are mapped into transmit PDO 3.

For the following items, refer to Mapping Parameters Objects on page 75:

l Subindex 0: Number of valid subindex objects in this object. This is set according to the
filled mapping entries starting from subindex 1.

l Subindexes 1–4: These provide information about the object mapped in this PDO. They
contain the indexes, the subindexes and the lengths of the mapped object. Fill these
starting from subindex 1. The structure is:

Bit Meaning

Bits 16–31 (16 bit) Index of the object
to map

Bits 8–15 (8 bit) Subindex of the
object to map

Bits 0–7 (8 bit) Length of the object
(in bits)

Moog Animatics Class 5 CANopen Guide Rev. H

Page 129 of 233

Object 1A03h: Transmit PDO Mapping Parameter 4

Object 1A03h: Transmit PDO Mapping Parameter 4

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

1A03h 000 Number of Entries 00h 04h 02h No Unsigned
8-bit

Read
Write

1A03h 001 Mapping Entry 1 00000000h FFFFFFFFh 60410010h No Unsigned
32-bit

Read
Write

1A03h 002 Mapping Entry 2 00000000h FFFFFFFFh 606C0020h No Unsigned
32-bit

Read
Write

1A03h 003 Mapping Entry 3 00000000h FFFFFFFFh 00000000h No Unsigned
32-bit

Read
Write

1A03h 004 Mapping Entry 4 00000000h FFFFFFFFh 00000000h No Unsigned
32-bit

Read
Write

This object controls which objects are mapped into transmit PDO 4.

For the following items, refer to Mapping Parameters Objects on page 75:

l Subindex 0: Number of valid subindex objects in this object. This is set according to the
filled mapping entries starting from subindex 1.

l Subindexes 1–4: These provide information about the object mapped in this PDO. They
contain the indexes, the subindexes and the lengths of the mapped object. Fill these
starting from subindex 1. The structure is:

Bit Meaning

Bits 16–31 (16 bit) Index of the object
to map

Bits 8–15 (8 bit) Subindex of the
object to map

Bits 0–7 (8 bit) Length of the object
(in bits)

Moog Animatics Class 5 CANopen Guide Rev. H

Page 130 of 233

Object 1A04h: Transmit PDO Mapping Parameter 5

Object 1A04h: Transmit PDO Mapping Parameter 5

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

1A04h 000 Number of Entries 00h 04h 02h No Unsigned
8-bit

Read
Write

1A04h 001 Mapping Entry 1 00000000h FFFFFFFFh 60410010h No Unsigned
32-bit

Read
Write

1A04h 002 Mapping Entry 2 00000000h FFFFFFFFh 60770010h No Unsigned
32-bit

Read
Write

1A04h 003 Mapping Entry 3 00000000h FFFFFFFFh 00000000h No Unsigned
32-bit

Read
Write

1A04h 004 Mapping Entry 4 00000000h FFFFFFFFh 00000000h No Unsigned
32-bit

Read
Write

This object controls which objects are mapped into transmit PDO 5.

For the following items, refer to Mapping Parameters Objects on page 75:

l Subindex 0: Number of valid subindex objects in this object. This is set according to the
filled mapping entries starting from subindex 1.

l Subindexes 1–4: These provide information about the object mapped in this PDO. They
contain the indexes, the subindexes and the lengths of the mapped object. Fill these
starting from subindex 1. The structure is:

Bit Meaning

Bits 16–31 (16 bit) Index of the object
to map

Bits 8–15 (8 bit) Subindex of the
object to map

Bits 0–7 (8 bit) Length of the object
(in bits)

Moog Animatics Class 5 CANopen Guide Rev. H

Page 131 of 233

Manufacturer-Specific Profile

Manufacturer-Specific Profile
This section describes the objects in the Manufacturer-Specific Profile. This set of objects in
the range 2000h to 5FFFh implement manufacturer-specific objects, which do not follow a
common standard. They provide access to SmartMotor commands and data.

Object 2000h: Node Id 134

Object 2001h: Bit Rate Index 135

Object 2100h: Port Configuration 136

Object 2101h: Bit IO 137

Object 2200h: User EEPROM 138

Object 2201h: User Variable 139

Object 2202h: Set Position Origin 140

Object 2203h: Shift Position Origin 141

Object 2204h: Mappable 32-bit Variables 142

Object 2205h Negative Software Position Limit 143

Object 2206h Positive Software Position Limit 144

Object 2207h Encoder Modulo Limit 145

Object 2208h Encoder Follow Data 146

Object 2209h Encoder Follow Control 147

Object 220Ah MFMUL 149

Object 220Bh MFDIV 150

Object 220Ch MFA 151

Object 220Dh MFD 152

Object 2220h: 8-Bit Mappable Variables 153

Object 2221h: 16-Bit Mappable Variables 154

Object 2300h: Bus Voltage 155

Object 2301h: RMS Current 156

Object 2302h: Internal Temperature 157

Object 2303h: Internal Clock 158

Object 2304h: Motor Status 159

Object 2305h: Motor Control 168

Moog Animatics Class 5 CANopen Guide Rev. H

Page 132 of 233

Manufacturer-Specific Profile

Object 2306h: Motor Subroutine Index 169

Object 2307h: Sample Period 170

Object 2308h: Microsecond Clock 171

Object 2309h: GOSUB R2 172

Object 2400h: Interpolation Mode Status 173

Object 2401h: Buffer Control 174

Object 2402h: Buffer Setpoint 175

Object 2403h: Interpolation User Bits 176

Object 2404h: Interpolation Sample Clock 177

Object 2500h: Encapsulated SmartMotor Command 178

Moog Animatics Class 5 CANopen Guide Rev. H

Page 133 of 233

Object 2000h: Node Id

Object 2000h: Node Id

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

2000h 000 Node Id 00h FFh
Loaded from
EEPROM at
boot-up

Yes Unsigned
8-bit

Read
Only

This object contains the active CANopen ID.

Moog Animatics Class 5 CANopen Guide Rev. H

Page 134 of 233

Object 2001h: Bit Rate Index

Object 2001h: Bit Rate Index

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

2001h 000 Bit Rate Index 00h 08h
Loaded from
EEPROM at
boot-up

Yes Unsigned
8-bit

Read
Only

This object reports the current CAN bit rate setting. The value is reported as an index
representing the bit rate. Refer to the following table:

Index Bit rate
(kilobits/sec)

0 1000

1 800

2 500

3 250

4 125

5 N/A

6 50

7 20

8 N/A

Moog Animatics Class 5 CANopen Guide Rev. H

Page 135 of 233

Object 2100h: Port Configuration

Object 2100h: Port Configuration

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

2100h 000 Port Configuration 00000000h 7FFFFFFFh 000000A0h Yes Unsigned
32-bit

Read
Write

This object controls the configuration of I/O ports 0 through 6 (formerly named A through G)
on a D-style motor. Due to constraints, some of the inputs are grouped together. For
example, ports 4 and 5 (formerly named E and F) can be configured together for RS-485. For
more details, see I/O on page 45.

This object is not supported in M-style firmware (5.98.x.x). For details, see I/O on page 45.

Object 2100 Port Port
Bits Binary Bits Value Effect Effect

0 (A) 1 (B)

0–3 (4 bits)

xxxx xxxx xxxx 0000 0 input input
xxxx xxxx xxxx 0001 1 output input
xxxx xxxx xxxx 0010 2 input output
xxxx xxxx xxxx 0011 3 output output

2 (C)

4–5 (2 bits)

xxxx xxxx xx00 xxxx 0 input
xxxx xxxx xx01 xxxx 1 output

xxxx xxxx xx10 xxxx 2 positive
limit
3 (D)

6–7 (2 bits)

xxxx xxxx 00xx xxxx 0 input
xxxx xxxx 01xx xxxx 1 output

xxxx xxxx 10xx xxxx 2 negative
limit
4 (E) 5 (F)

8–10 (3 bits)

xxxx x000 xxxx xxxx 0 input input
xxxx x001 xxxx xxxx 1 output input
xxxx x010 xxxx xxxx 2 input output
xxxx x011 xxxx xxxx 3 output output
xxxx x100 xxxx xxxx 4 I²C
xxxx x101 xxxx xxxx 5 RS-485

6 (G)

11–12 (2 bits)
xxx0 0xxx xxxx xxxx 0 input
xxx0 1xxx xxxx xxxx 1 output
xxx1 0xxx xxxx xxxx 2 go

13–15 (3 bits) N/A N/A Reserved

Moog Animatics Class 5 CANopen Guide Rev. H

Page 136 of 233

Object 2101h: Bit IO

Object 2101h: Bit IO

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

2101h 000 Number of Entries 03h 03h 03h No Unsigned
8-bit

Read
Only

2101h 001 Set Output 0000h 7FFFh* 0000h Yes Unsigned
16-bit

Read
Write

2101h 002 Clear Output 0000h 7FFFh* 0000h Yes Unsigned
16-bit

Read
Write

2101h 003 Make Input 0000h 7FFFh* 0000h Yes Unsigned
16-bit

Read
Write

*Class 5 firmware doesn't necessarily return an error specific to the IO ports actually present; anything unsup-
ported may be silently ignored.

This object allows individual control of each I/O point. It is designed for SDO-type
communications at startup. It is not intended for cyclic PDO communications.

The value written is the identifier of the I/O port to be controlled. The action to take on that
port is a function of the specified subindex object:

l subindex 1: Drive the specified I/O high.

l subindex 2: The action depends on I/O type:

l For D-style motor ports 0–6, drive the specified I/O low

l For D-style motor ports 16–25, turn off the specified I/O

l For M-style motor ports 0–10, turn off the specified I/O

l subindex 3: Turn off the specified I/O and disable certain special function such as a limit
input. The specified I/O point will simply become a generic input.

For example, to make I/O port 2 (formerly named port C) a generic input, write the
value 2 to subindex 3.

For more I/O details, see I/O on page 45.

Moog Animatics Class 5 CANopen Guide Rev. H

Page 137 of 233

Object 2200h: User EEPROM

Object 2200h: User EEPROM

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

2200h 000 Number of Entries 00h FFh 03h No Unsigned
8-bit

Read
Only

2200h 001 EEPROM index 0000h FFFFh 0000h No Unsigned
16-bit

Read
Write

2200h 002 EEPROM number of bytes 00h FFh 00h No Unsigned
8-bit

Read
Write

2200h 003 EEPROM value No String: 8
bytes.

Read
Write

This object provides access to user non-volatile EEPROM memory. Through SDO commands, a
value can be written to the user EEPROM. To do this:

1. Set the EEPROM index (subindex 1) to the EEPROM location where the new value will be
written. Typical values are 0 to 32339.

2. Set subindex 2 to the number of bytes that will be written.

3. Write the binary data to the EEPROM in subindex 3. Up to 8 bytes may be written at a
time.

Moog Animatics Class 5 CANopen Guide Rev. H

Page 138 of 233

Object 2201h: User Variable

Object 2201h: User Variable

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

2201h 000 Number of Entries 00h FFh 03h No Unsigned
8-bit

Read
Only

2201h 001 Index 0000h FFFFh 0000h No Unsigned
16-bit

Read
Write

2201h 002 Data Type 80h 7Fh 00h No Signed
8-bit

Read
Write

2201h 003 Value 80000000h 7FFFFFFFh 00000000h No Signed
32-bit

Read
Write

This object provides access to user variables through SDO commands. To do this:

1. Set the index (subindex 1) to the user variable that a value will be written to or read
from. Refer to the following table to determine the correct index.

2. Set subindex 2 according to the table for the desired variable-type access.

3. Read or write the data using subindex 3.

Only one variable is written at a time. If the data type is ab[] or aw[], a single byte or word is
written, respectively.

Data type
(subindex 2)

Index
(subindex 1)

Variable's
data type

Variables
accessed

0 0–25 long (32-bit) a–z

0 26–51 long (32-bit) aa–zz

0 52–77 long (32-bit) aaa–zzz

1 0–50 long (32-bit) al[Index]

2 0–101 word (16-bit) aw[Index]

3 0–203 byte (8-bit) ab[Index]

The variable arrays: al[index], aw[index] and ab[index] overlap the same physical memory
of 204 bytes. This allows different access to common memory based on data size. For
instance, al[0] is the same region as ab[0] through ab[3]. The byte order is little-endian, such
that ab[0] is the lowest byte of al[0].

For more details, see User Variables on page 45.

Moog Animatics Class 5 CANopen Guide Rev. H

Page 139 of 233

Object 2202h: Set Position Origin

Object 2202h: Set Position Origin

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

2202h 000 Set Position Origin 80000000h 7FFFFFFFh 00000000h Yes Signed
32-bit

Read
Write

The value written to this object becomes the new position value. Both the commanded
position (RPC) and actual position (RPA) are shifted by this value minus the current command
value. The value read from this object is the most recent value written to this object — it is
not an indication of the motor's current state.

Similar SmartMotor Commands: O=

Moog Animatics Class 5 CANopen Guide Rev. H

Page 140 of 233

Object 2203h: Shift Position Origin

Object 2203h: Shift Position Origin

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

2203h 000 Shift Position Origin 80000000h 7FFFFFFFh 00000000h Yes Signed
32-bit

Read
Write

This object shifts the absolute position (RPA) and the commanded position (RPC) by the
specified value. Each time this value is written, the position is shifted by that amount. The
value read from this object is the most recent value written to this object — it is not an
indication of the motor's current state.

Similar SmartMotor Commands: OSH=

Moog Animatics Class 5 CANopen Guide Rev. H

Page 141 of 233

Object 2204h: Mappable 32-bit Variables

Object 2204h: Mappable 32-bit Variables

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

2204h 000 Number of Entries 04h 04h 04h No Unsigned
8-bit

Read
Only

2204h 001 aaa 80000000h 7FFFFFFFh 00000000h Yes Signed
32-bit

Read
Write

2204h 002 bbb 80000000h 7FFFFFFFh 00000000h Yes Signed
32-bit

Read
Write

2204h 003 ccc 80000000h 7FFFFFFFh 00000000h Yes Signed
32-bit

Read
Write

2204h 004 ddd 80000000h 7FFFFFFFh 00000000h Yes Signed
32-bit

Read
Write

This object provides direct read or write access to user variables aaa–ddd. This object is
provided to fill the need for PDO access to user variables. SDO access is also allowed. Also,
see Object 2220h: 8-Bit Mappable Variables on page 153 and Object 2221h: 16-Bit Mappable
Variables on page 154.

For more details, see User Variables on page 45.

Moog Animatics Class 5 CANopen Guide Rev. H

Page 142 of 233

Object 2205h Negative Software Position Limit

Object 2205h Negative Software Position Limit

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

2205h 000 Negative Software Position
Limit 80000000h 7FFFFFFFh 80000000h Yes Signed

32-bit
Read
Write

This object defines the negative software position limit in units of encoder counts. If the
software position limits are enabled and the actual position is out of range, then a software-
limit fault occurs.

The term "negative" does not imply the value must be negative. Positive values are
permitted; however, they should be a lower value than the positive software position limit.

Similar SmartMotor Commands: SLN=, RSLN

Moog Animatics Class 5 CANopen Guide Rev. H

Page 143 of 233

Object 2206h Positive Software Position Limit

Object 2206h Positive Software Position Limit

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

2206h 000 Positive Software Position
Limit 80000000h 7FFFFFFFh 7FFFFFFFh Yes Signed

32-bit
Read
Write

This object defines the positive software position limit in units of encoder counts. If the
software limits are enabled and the actual position is out of range, then a software-limit fault
occurs.

The term "positive" does not imply the value must be positive. Negative values are permitted;
however, they should be a higher value than the negative software position limit.

Similar SmartMotor Commands: SLP=, RSLP

Moog Animatics Class 5 CANopen Guide Rev. H

Page 144 of 233

Object 2207h Encoder Modulo Limit

Object 2207h Encoder Modulo Limit

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

2207h 000 Encoder Modulo Limit 0 FFFFFFFFh FFFFFFFFh No unsigned
32-bit

Read
Write

This object defines the encoder modulo limit in units of encoder counts.

An encoder will have some maximum value (modulo limit) before a roll-over of values. The
modulo limit must be known by the motor to correctly interpret the incoming encoder data.
Object 2207h supports this. The number is unsigned and based at 0. For example, an encoder
with a resolution of 4096 will have this register configured with the value 4095, because that
is the largest possible value (i.e., the value range is 0-4095 inclusive).

EXAMPLE:

'++++ HEX Coded Objects for CAN +++++
. . .
#define x2207 8711 'Object 2207h: External encoder follow max value

'(where encoder rolls over) i.e., 10 bit encoder
'would be 1023

. . .
fff=mmm ' following motor's address. In this demo, it is the network

' master. But you can make it a 3rd-party
. . .
' Set other objects in follow motor relating to follow mode.
SDOWR(fff,x2207,0,4,xffffffff) GOSUB10 'Set encoder modulo limit
. . .
C10

' Code to check for CAN error and display it
. . .

RETURN

Moog Animatics Class 5 CANopen Guide Rev. H

Page 145 of 233

Object 2208h Encoder Follow Data

Object 2208h Encoder Follow Data

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

2208h 000 Number of objects 3 3 3 No unsigned
8-bit

Read
Only

2208h 001 Encoder input value 8-bit
signed or unsigned 0 FFh 0 Yes unsigned

8-bit
Read
Write

2208h 002 Encoder input value 16-bit
signed or unsigned 0 FFFFh 0 Yes unsigned

16-bit
Read
Write

2208h 003 Encoder input value 32-bit
signed or unsigned. 0 FFFFFFFFh 0 Yes unsigned

32-bit
Read
Write

This object is provided to accept data from a network (CANopen) based encoder. Three
different data sizes are provided to handle PDO mapping to data sources of 8, 16, and 32 bits.
Also, see object 2207h for configuring the resolution of this external encoder so that the
SmartMotor knows when the encoder has rolled-over its number space.

l Subindex 0: Returns the number of subindex objects in this object

l Subindex 1: Encoder input value, 8-bit signed or unsigned

l Subindex 2: Encoder input value, 16-bit signed or unsigned

l Subindex 3: Encoder input value, 32-bit signed or unsigned

EXAMPLE:

Refer to the example program "CAN Bus - Time Sync Follow Encoder" in Chapter 3 of the
SmartMotor Developer's Guide.

Moog Animatics Class 5 CANopen Guide Rev. H

Page 146 of 233

Object 2209h Encoder Follow Control

Object 2209h Encoder Follow Control

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

2209h 000 Encoder follow control 0 FFFFh 0000h Yes unsigned
16-bit

Read
Write

This object controls the behavior for the mode of following a network encoder and behavior of
Object 220Ch MFA and Object 220Dh MFD. Refer to the following table.

Bit Meaning

Bit 0 Halt CANopen encoder follow/cam mode.

0: Run/resume normally with the next increment,
NOTE: Cam mode will restart from MCW command setting depending on bit 1.

1: Mask the encoder increments. Setting to 1 will bring motors to a stop on the
Sync packet event.

See start/stop capability details below this table.

Bit 1 Control the resume of cam relative to bit 0.

Firmware 5.0.4.16 or higher and 5.98.4.16 or higher:

0: Cam is restarted on resume (bit 0).

1: Resume of Cam mode from existing master location instead of restart.

NOTE: Previous firmware does not support this and always restarts cam on
resume (bit 0).

Bit 2 Ramp-up command MFA master or slave units. Object Object 220Ch MFA (not
the serial command MFA)
0: master
1: slave

Bit 3 Ramp-down command MFD master or slave units. Object Object 220Dh MFD
(not the serial command MFD)
0: master
1: slave

Bit 4-15 Reserved. Write as 0.

Start/Stop Capability

For certain applications, object 2209h provides a start/stop capability used to maintain
relative position offset between motors:

l Start: When starting in this mode with the G(2) command (object 2209h), the next
encoder value received after this command will be the first master position. After that,
the following encoder value received will be used to compute a difference from the first,
and so on. This avoids a sudden jump in position when restarting after a stop (i.e., the
firmware must ignore the master encoder while the motors are stopped).

Moog Animatics Class 5 CANopen Guide Rev. H

Page 147 of 233

Start/Stop Capability

l Stop: To ensure multiple following motors stop while remembering position offset
relative to each other, the encoder data should be received through a single
synchronous PDO to all motors. The control command object 2209h should be
configured as a single synchronous PDO from the master that all motors receive at the
same time using the same COB-ID. This allows the motors to receive the encoder data
and control commands in a uniform way, relative to each other, when the sync packet
arrives to all motors.

EXAMPLE:

Refer to the example program "CAN Bus - Time Sync Follow Encoder" in Chapter 3 of the
SmartMotor Developer's Guide.

Moog Animatics Class 5 CANopen Guide Rev. H

Page 148 of 233

Object 220Ah MFMUL

Object 220Ah MFMUL

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

220Ah 000 MFMUL (Mode Follow Mul-
tiplier) -32767 32767 1 No Signed

16-bit
Read
Write

This object specifies the multiplier for external encoder mode follow with ratio MFMUL/MFDIV.

Both MFMUL and MFDIV may be positive or negative; this controls the resulting direction of
shaft rotation.

For more details on MFMUL, see the SmartMotor Developer's Guide.

EXAMPLE:

'++++ HEX Coded Objects for CAN +++++
. . .
#define x220A 8714 ' Object 220Ah: External encoder follow MFMUL
. . .
fff=mmm ' following motor's address. In this demo, it is the network

' master. But you can make it a 3rd-party
. . .

' Set other objects in follow motor relating to follow mode.
. . .
SDOWR(fff,x220A,0,2,100) GOSUB10 ' set MFMUL
. . .
C10

' Code to check for CAN error and display it
. . .

RETURN

Similar SmartMotor Commands: MFMUL=, RMFMUL, MFDIV

Moog Animatics Class 5 CANopen Guide Rev. H

Page 149 of 233

Object 220Bh MFDIV

Object 220Bh MFDIV

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

220Bh 000 MFDIV (Mode Follow Divisor) -32767 * 32767 * 1 No Signed
16-bit

Read
Write

* The value 0 is not accepted because a divide by 0 is not possible.

This object specifies the divisor for external encoder mode follow with ratio MFMUL/MFDIV.

Both MFMUL and MFDIV may be positive or negative; this controls the resulting direction of
shaft rotation.

For more details on MFDIV, see the SmartMotor Developer's Guide.

EXAMPLE:

'++++ HEX Coded Objects for CAN +++++
. . .
#define x220B 8715 ' Object 220Bh: External encoder follow MFDIV
. . .
fff=mmm ' following motor's address. In this demo, it is the network

' master. But you can make it a 3rd-party
. . .

' Set other objects in follow motor relating to follow mode.
. . .
SDOWR(fff,x220B,0,2,100) GOSUB10 ' set MFDIV
. . .
C10

' Code to check for CAN error and display it
. . .

RETURN

Similar SmartMotor Commands: MFDIV=, RMFDIV, MFMUL

Moog Animatics Class 5 CANopen Guide Rev. H

Page 150 of 233

Object 220Ch MFA

Object 220Ch MFA

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

220Ch 000 MFA (Mode Follow Ascend) 0 7FFFFFFFh 0 (disabled) No Signed
32-bit

Read
Write

This object sets the ascend ramp to the specified sync ratio from a ratio of zero.

For more details on MFA, see the SmartMotor Developer's Guide.

EXAMPLE:

'++++ HEX Coded Objects for CAN +++++
. . .
#define x220C 8716 ' Object 220Ch: External encoder follow MFA
. . .
fff=mmm ' following motor's address. In this demo, it is the network

' master. But you can make it a 3rd-party
. . .

' Set other objects in follow motor relating to follow mode.
. . .
SDOWR(fff,x220C,0,4,20000) GOSUB10 ' set MFA control word x2209

' determines if master or slave units.
. . .
C10

' Code to check for CAN error and display it
. . .

RETURN

Similar SmartMotor Commands: MFA, MFD

Moog Animatics Class 5 CANopen Guide Rev. H

Page 151 of 233

Object 220Dh MFD

Object 220Dh MFD

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

220Ch 000 MFA (Mode Follow Descend) 0 7FFFFFFFh 0 (disabled) No Signed
32-bit

Read
Write

This object sets the descend ramp from the specified sync ratio to a ratio of zero.

For more details on MFD, see the SmartMotor Developer's Guide.

EXAMPLE:

'++++ HEX Coded Objects for CAN +++++
. . .
#define x220D 8717 ' Object 220Ch: External encoder follow MFD
. . .

' Set other objects in follow motor relating to follow mode.
. . .
fff=mmm ' following motor's address. In this demo, it is the network

' master. But you can make it a 3rd-party
. . .
SDOWR(fff,x220D,0,4,10000) GOSUB10 ' set MFD control word x2209

' determines if master or slave units.
. . .
C10

' Code to check for CAN error and display it
. . .

RETURN

Similar SmartMotor Commands: MFD, MFA

Moog Animatics Class 5 CANopen Guide Rev. H

Page 152 of 233

Object 2220h: 8-Bit Mappable Variables

Object 2220h: 8-Bit Mappable Variables

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

2220h 000 Number of Entries 04h 04h 04h No Unsigned
8-bit

Read
Only

2220h 001 ab[0] 80h 7Fh 00h Yes Signed
8-bit

Read
Write

2220h 002 ab[1] 80h 7Fh 00h Yes Signed
8-bit

Read
Write

2220h 003 ab[2] 80h 7Fh 00h Yes Signed
8-bit

Read
Write

2220h 004 ab[3] 80h 7Fh 00h Yes Signed
8-bit

Read
Write

This object provides direct read or write access to user variables ab[0]–ab[3]. This object is
provided to fill the need for PDO access to user variables. SDO access is also allowed. Also,
see Object 2221h: 16-Bit Mappable Variables on page 154 and Object 2204h: Mappable 32-bit
Variables on page 142.

For more details, see User Variables on page 45.

Moog Animatics Class 5 CANopen Guide Rev. H

Page 153 of 233

Object 2221h: 16-Bit Mappable Variables

Object 2221h: 16-Bit Mappable Variables

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

2221h 000 Number of Entries 04h 04h 04h No Unsigned
8-bit

Read
Only

2221h 001 aw[32] 8000h 7FFFh 0000h Yes Signed
16-bit

Read
Write

2221h 002 aw[33] 8000h 7FFFh 0000h Yes Signed
16-bit

Read
Write

2221h 003 aw[34] 8000h 7FFFh 0000h Yes Signed
16-bit

Read
Write

2221h 004 aw[35] 8000h 7FFFh 0000h Yes Signed
16-bit

Read
Write

This object provides direct read or write access to user variables aw[32]–aw[35]. This object
is provided to fill the need for PDO access to user variables. SDO access is also allowed. Also,
see Object 2220h: 8-Bit Mappable Variables on page 153 and Object 2204h: Mappable 32-bit
Variables on page 142.

For more details, see User Variables on page 45.

Moog Animatics Class 5 CANopen Guide Rev. H

Page 154 of 233

Object 2300h: Bus Voltage

Object 2300h: Bus Voltage

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

2300h 000 Bus Voltage 0000h FFFFh Yes Unsigned
16-bit

Read
Only

This object reports the bus voltage (in millivolts) supplied to the motor drive stage.

Moog Animatics Class 5 CANopen Guide Rev. H

Page 155 of 233

Object 2301h: RMS Current

Object 2301h: RMS Current

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

2301h 000 RMS Current 0000h FFFFh Yes Unsigned
16-bit

Read
Only

This object reports the RMS current (in milliamperes) of the motor windings.

Similar SmartMotor Commands: RUIA

Moog Animatics Class 5 CANopen Guide Rev. H

Page 156 of 233

Object 2302h: Internal Temperature

Object 2302h: Internal Temperature

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

2302h 000 Internal Temperature 00h FFh Yes Unsigned
8-bit

Read
Only

This object reports the SmartMotor's internal temperature in degrees C; the resolution is ±1
degree C.

Similar SmartMotor Commands: RTEMP

Moog Animatics Class 5 CANopen Guide Rev. H

Page 157 of 233

Object 2303h: Internal Clock

Object 2303h: Internal Clock

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

2303h 000 Internal Clock 00000000h FFFFFFFFh 00000000h Yes Unsigned
32-bit

Read
Write

This object represents the SmartMotor's internal clock in milliseconds. The value can be set as
desired. This object is equivalent to the RCLK, =CLK, or CLK= commands (read or write), and
it uses the same internal clock.

NOTE: This object is not the same as Object 2308h, which uses special
clock-synchronization features that are only accessible through CANopen or serial
interpolation. For details, see Object 2308h: Microsecond Clock on page 171.

Similar SmartMotor Commands: CLK=, RCLK

Moog Animatics Class 5 CANopen Guide Rev. H

Page 158 of 233

Object 2304h: Motor Status

Object 2304h: Motor Status

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

2304h 000 Number of Entries 00h FFh 12h
(18 dec) No Unsigned

8-bit
Read
Only

2304h 001 Status Word 0 0000h FFFFh Yes Unsigned
16-bit

Read
Only

2304h 002 Status Word 1 0000h FFFFh Yes Unsigned
16-bit

Read
Only

2304h 003 Status Word 2 0000h FFFFh Yes Unsigned
16-bit

Read
Only

2304h 004 Status Word 3 0000h FFFFh Yes Unsigned
16-bit

Read
Only

2304h 005 Status Word 4 0000h FFFFh Yes Unsigned
16-bit

Read
Only

2304h 006 Status Word 5 0000h FFFFh Yes Unsigned
16-bit

Read
Only

2304h 007 Status Word 6 0000h FFFFh Yes Unsigned
16-bit

Read
Only

2304h 008 Status Word 7 0000h FFFFh Yes Unsigned
16-bit

Read
Only

2304h 009 Status Word 8 0000h FFFFh Yes Unsigned
16-bit

Read
Only

2304h 010 Status Word 9 0000h FFFFh Yes Unsigned
16-bit

Read
Only

2304h 011 Status Word 10 0000h FFFFh Yes Unsigned
16-bit

Read
Only

2304h 012 Status Word 11 0000h FFFFh Yes Unsigned
16-bit

Read
Only

2304h 013 Status Word 12 0000h FFFFh Yes Unsigned
16-bit

Read
Only

2304h 014 Status Word 13 0000h FFFFh Yes Unsigned
16-bit

Read
Write

2304h 015 Status Word 14 0000h FFFFh Yes Unsigned
16-bit

Read
Only

2304h 016 Status Word 15 0000h FFFFh Yes Unsigned
16-bit

Read
Only

2304h 017 Status Word 16 0000h FFFFh Yes Unsigned
16-bit

Read
Only

2304h 018 Status Word 17 0000h FFFFh Yes Unsigned
16-bit

Read
Only

This object reports the SmartMotor status words, which are equivalent to the RW(index)
command. There is a special case where user status bits in status word 13 are writable
through this object. This allows a host to cause user interrupts in a motor.

l Subindex 0 reports the number of status words (18)

l Subindex 1 reports SmartMotor status word 0

l Subindex 2 reports SmartMotor status word 1

Moog Animatics Class 5 CANopen Guide Rev. H

Page 159 of 233

Object 2304h: Motor Status

l Subindex 3 reports SmartMotor status word 2

l Subindex 4 reports SmartMotor status word 3

l Subindex 5 reports SmartMotor status word 4

l Subindex 6 reports SmartMotor status word 5

l Subindex 7 reports SmartMotor status word 6

l Subindex 8 reports SmartMotor status word 7

l Subindex 9 reports SmartMotor status word 8

l Subindex 10 reserved

l Subindex 11 reports SmartMotor status word 10

l Subindex 12 reserved

l Subindex 13 reports SmartMotor status word 12

l Subindex 14 reports SmartMotor status word 13

l Subindexes 15–16 reserved

l Subindex 17 reports SmartMotor status word 16

l Subindex 18 reports SmartMotor status word 17

Status Word 0 Motion and motor health

0 Drive ready

1 Motor is off

2 Trajectory in progress

3 Bus voltage fault

4 Overcurrent occurred

5 Excessive temperature fault

6 Excessive position error fault

7 Velocity limit fault

8 Real-time temperature limit

9 Position error derivative fault

10 Right (+) limit enabled

11 Left (–) limit enabled

12 Historical right (+) limit

13 Historical left (–) limit

14 Right (+) limit asserted

15 Left (–) limit asserted

Moog Animatics Class 5 CANopen Guide Rev. H

Page 160 of 233

Object 2304h: Motor Status

Status Word 1 Index registration and soft limits

0 Arming bit for rise capture of encoder 0

1 Arming bit for fall capture of encoder 0

2 Rising edge captured on encoder 0

3 Falling edge captured on encoder 0

4 Arming bit for rise capture of encoder 1

5 Arming bit for fall capture of encoder 1

6 Rising edge captured on encoder 1

7 Falling edge captured on encoder 1

8 Capture input state 0

9 Capture input state 1

10 Soft limits enabled

11 Soft limits behavior mode

12 Historical right soft limit

13 Historical left soft limit

14 Right soft limit

15 Left soft limit

Status Word 2 Communication state and program state

0 Com 0 error

1 Com 1 error

2 Reserved

3 Reserved

4 CAN error

5 Reserved

6 Ethernet error

7 IIC communications active

8 Reserved

9 Datablock checksum is bad (fault)

10 User program is running

11 Trace in progress

12 User EEPROM write buffer overflow

13 User EEPROM busy

14 Command error

15 Program checksum error

Moog Animatics Class 5 CANopen Guide Rev. H

Page 161 of 233

Object 2304h: Motor Status

Status Word 3 PID, brake, move generation

0 Position error has exceeded soft threshold

1 Torque saturation

2 Voltage saturation

3 Wraparound occurred

4 KG enabled

5 Shaft direction

6 Torque direction

7 IO fault latch

8 Trajectory 1 relative position move

9 Reserved

10 Reserved

11 Modulo counter rollover

12 Brake asserted

13 Brake OK

14 Go on external input

15 Velocity reached or target ratio reached

Status Word 4 Timer status

0 Timer 0 running

1 Timer 1 running

2 Timer 2 running

3 Timer 3 running

4 Reserved

5 Reserved

6 Reserved

7 Reserved

8 Reserved

9 Reserved

10 Reserved

11 Reserved

12 Reserved

13 Reserved

14 Reserved

15 Reserved

Moog Animatics Class 5 CANopen Guide Rev. H

Page 162 of 233

Object 2304h: Motor Status

Status Word 5 Interrupt enable status

0 Event 0 enabled

1 Event 1 enabled

2 Event 2 enabled

3 Event 3 enabled

4 Event 4 enabled

5 Event 5 enabled

6 Event 6 enabled

7 Event 7 enabled

8 Reserved

9 Reserved

10 Reserved

11 Reserved

12 Reserved

13 Reserved

14 Reserved

15 Events enabled

Status Word 6 Commutation status

0 Trapezoidal commutation

1 Enhanced trapezoidal commutation

2 Sinusoidal commutation

3 Current mode commutation

4 Reserved

5 Reserved

6 Reserved

7 Drive enable input fault

8 Electrical angle valid

9 TOB enabled (Torque overrun braking)

10 Invert direction enabled

11 MTB active

12 Encoder fault

13 Low bus voltage

14 High bus voltage

15 Reserved

Moog Animatics Class 5 CANopen Guide Rev. H

Page 163 of 233

Object 2304h: Motor Status

Status Word 7 Multiple Trajectories

0 TG1 in progress

1 TG1 Accel/Ascend

2 TG1 Slewing

3 TG1 Decel/Descend

4 TG1 Reserved/Dwell

5 Reserved

6 Reserved

7 Reserved

8 TG2 in progress

9 TG2 Accel/Ascend

10 TG2 Slewing

11 TG2 Decel/Descend

12 TG2 Dwell (higher)

13 TG2 Traverse state

14 TG2 Lower dwell

15 TS Wait

Status Word 8 Cam/IP Mode user segment bits

0 Cam user bit 0

1 Cam user bit 1

2 Cam user bit 2

3 Cam user bit 3

4 Cam user bit 4

5 Cam user bit 5

6 Cam mode 0

7 Cam mode 1

8 IP user bit 0

9 IP user bit 1

10 IP user bit 2

11 IP user bit 3

12 IP user bit 4

13 IP user bit 5

14 IP mode 0

15 IP mode 1

Moog Animatics Class 5 CANopen Guide Rev. H

Page 164 of 233

Object 2304h: Motor Status

Status Words 9 Reserved

Status Word 10 RxPDO Arrival Notification

0 Master enabled

1 Rx PDO 1 arrived

2 Rx PDO 2 arrived

3 Rx PDO 3 arrived

4 Rx PDO 4 arrived

5 Rx PDO 5 arrived

6 Reserved

7 Reserved

8 Reserved

9 Reserved

10 Reserved

11 Reserved

12 Reserved

13 Reserved

14 Reserved

15 Reserved
The user program should clear these status bits with a Z(10,bit) command,
where bit is values 1–5, after the event handler part of the user program is
executed. Bit 0 cannot be cleared—it is an indication of the master status,
see Network Control Commands on page 83.

NOTE: The ZS command will have no effect on these bits.

Status Word 11 Reserved

Status Word 12 User-settable status bits
(Read-only from this object)

0 User-settable bit 0

1 User-settable bit 1

2 User-settable bit 2

3 User-settable bit 3

4 User-settable bit 4

5 User-settable bit 5

6 User-settable bit 6

Moog Animatics Class 5 CANopen Guide Rev. H

Page 165 of 233

Object 2304h: Motor Status

Status Word 12 User-settable status bits
(Read-only from this object)

7 User-settable bit 7

8 User-settable bit 8

9 User-settable bit 9

10 User-settable bit 10

11 User-settable bit 11

12 User-settable bit 12

13 User-settable bit 13

14 User-settable bit 14

15 User-settable bit 15

Status Word 13
User-settable status bits

(Writable from this object)

0 User-settable bit 16

1 User-settable bit 17

2 User-settable bit 18

3 User-settable bit 19

4 User-settable bit 20

5 User-settable bit 21

6 User-settable bit 22

7 User-settable bit 23

8 User-settable bit 24

9 User-settable bit 25

10 User-settable bit 26

11 User-settable bit 27

12 User-settable bit 28

13 User-settable bit 29

14 User-settable bit 30

15 User-settable bit 31

Status Words 14
and 15

Reserved

Status Word 16 I/O: D-style: 0-6 (7 is a virtual bit)
I/O: M-style: 0-10

Moog Animatics Class 5 CANopen Guide Rev. H

Page 166 of 233

Object 2304h: Motor Status

Status Word 17 I/O: D-style only: AD1 I/O optional

Moog Animatics Class 5 CANopen Guide Rev. H

Page 167 of 233

Object 2305h: Motor Control

Object 2305h: Motor Control

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

2305h 000 Motor Control 0000h FFFFh 0000h Yes Unsigned
16-bit

Read
Write

This object provides access to certain SmartMotor commands. The value written to the object
is a bit field; the corresponding functions are called when the value of a bit is changed. The
function is not repeated if the bit value stays the same. The value read from this object is the
most recent value written to this object — it is not an indication of the motor's current state.

NOTE: This object may be difficult to use; consider using object 2309h instead.
This command may be removed in future versions.

Bit Function
0 Software limit enable:

• Transition 0 to 1: SLE command (enable software limits)
• Transition 1 to 0: SLD command (disable software limits)

1 Program control:
• Transition 0 to 1: RUN command.
• Transition 1 to 0: END command.

2–15 Reserved (set to 0).

Moog Animatics Class 5 CANopen Guide Rev. H

Page 168 of 233

Object 2306h: Motor Subroutine Index

Object 2306h: Motor Subroutine Index

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

2306h 000 Motor Subroutine Index –1 999 –1 Yes Signed
16-bit

Read
Write

Each time this object is written, it calls the specified subroutine. Therefore, care must be
taken to ensure the subroutine has completed before calling it again. The value read from this
object is the most recent value written to this object — it is not an indication of the motor's
current state.

For more details, see Calling Subroutines on page 47.

Value written Function

–1 No operation

0–999 GOSUB(value)

Object 2306h has the following limitations:

l Each time it is accessed by a repeated PDO, it will call a subroutine. Therefore, this
object is not useful for PLCs or other hosts that send repeated data.

l There is no mechanism provided to indicate that the subroutine has completed.
Therefore, the progress of the subroutine cannot be monitored to know when it is
finished and ready to call again.

Object 2309h fixes these two limitations and provides additional features. For details, see
Object 2309h: GOSUB R2 on page 172.

Moog Animatics Class 5 CANopen Guide Rev. H

Page 169 of 233

Object 2307h: Sample Period

Object 2307h: Sample Period

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

2307h 000 Sample Period 0000h FFFFh 12500 Yes Unsigned
16-bit

Read
Only

This object reports the SmartMotor sample period in microseconds*100. This is the time
period for the PID cycle and trajectory update.

PID
mode

Reported from
object 2307

Time
(microseconds)

1 6250 62.5

2 12500 125.0

4 25000 250.0

8 50000 500.0

Similar SmartMotor Commands: RSP (PID rate info), RSAMP

Moog Animatics Class 5 CANopen Guide Rev. H

Page 170 of 233

Object 2308h: Microsecond Clock

Object 2308h: Microsecond Clock

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

2308h 000 Microsecond Clock 00000000h FFFFFFFFh 00000000h Yes Unsigned
32-bit

Read
Write

This object represents an internal sync clock in microseconds. Writing to this object can
interfere with the time synchronization process used with Interpolation mode. Reading this
object provides a value that is only current with the most recent PID cycle.

NOTE: This object is tied to special clock-synchronization features that are only
accessible through CANopen or serial interpolation. There is no SmartMotor
command equivalent — it is not associated with the SmartMotor CLK-type
commands, which use a different physical clock that operates independently.
Therefore, this object is not the same as Object 2303h. For details, see Object
2303h: Internal Clock on page 158.

Moog Animatics Class 5 CANopen Guide Rev. H

Page 171 of 233

Object 2309h: GOSUB R2

Object 2309h: GOSUB R2

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

2309h 000 GOSUB R2 –9 +999 –1 Yes Signed
16-bit

Read
Write

This version of GOSUB will only take action when the value written is different from previous
values written to this object.

This GOSUB will not nest subroutine calls through this object (other sources of GOSUB may
still nest) If there is already an active subroutine that was called through this object, further
calls are ignored without buffering.

The following table describes the possible values:

Value Description

0–999 Corresponds to GOSUB(0) through GOSUB(999). An SDO error is issued if a
previous GOSUB called from this object is still busy.

–1 Do nothing. This is useful as a null value since a transition must be made for a
new GOSUB call.

–2 END
–3 RUN
–4 EILP
–5 EILN
–6 SLE
–7 SLD
–8 SLM(0)
–9 SLM(1)

–10 Freewheel when the drive is turned off. However, the configured fault reaction
will be in effect and will take priority if a fault is present.

Similar SmartMotor Commands: GOSUB, END, RUN, EILP, EILN, SLE, SLD, SLM()

Moog Animatics Class 5 CANopen Guide Rev. H

Page 172 of 233

Object 2400h: Interpolation Mode Status

Object 2400h: Interpolation Mode Status

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

2400h 000 Interpolation Mode Status 0000h FFFFh Yes Unsigned
16-bit

Read
Only

This object provides additional information relevant to Interpolation mode.

Bit Function

0–5 Number of free record buffer locations

6 Position error tolerance exceeded

7 PLL locked to sync status (firmware 5.0.4.49 / 5.98.0.49
or later)

8 IP mode pending

9 IP mode ready

10 Invalid time units error

11 Invalid position increment error

12 Drive ready

13 FIFO overflow

14 FIFO underflow

15 IP mode running

Moog Animatics Class 5 CANopen Guide Rev. H

Page 173 of 233

Object 2401h: Buffer Control

Object 2401h: Buffer Control

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

2401h 000 Buffer Control 0000h FFFFh 0000h Yes Unsigned
16-bit

Read
Write

This object provides a special way of controlling the interpolation buffer level when the host
cannot monitor the buffer level and/or time synchronization is not possible. The value written
is a proportional response to how far the interpolation is from the target buffer level. That
level is set using the Buffer Setpoint object (2402h). For details, see Object 2402h: Buffer
Setpoint on page 175.

As the buffer empties, the interpolation rate slightly decreases; as the buffer fills, the
interpolation rate slightly increases. A typical value to write is 10000.

Note that this is not an ideal way to control the buffer level for the following reasons:

l The buffers of different motors will not perfectly align, so the motion will not be
perfectly synchronized.

l The host must send the data to the motor at an even time spacing. However, some
hosts may fill the buffer in bursts of activity — that will not work with the SmartMotor.

Moog Animatics Class 5 CANopen Guide Rev. H

Page 174 of 233

Object 2402h: Buffer Setpoint

Object 2402h: Buffer Setpoint

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

2402h 000 Buffer Setpoint 00h FFh 14h No Unsigned
8-bit

Read
Write

This object specifies the target buffer level. It is used in conjunction with the Buffer Control
object (2401h) to maintain the buffer at that level. For details, see Object 2401h: Buffer
Control on page 174.

Moog Animatics Class 5 CANopen Guide Rev. H

Page 175 of 233

Object 2403h: Interpolation User Bits

Object 2403h: Interpolation User Bits

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

2403h 000 Interpolation User Bits 00h 3Fh 00h Yes Unsigned
8-bit

Read
Write

These bits are captured from this register when a new interpolation record is written. When
the interpolation data is consumed by Interpolation mode, these bits will be reported in the
status word (object 2304h, subindex 9) along with the corresponding data record. Those user
bits will be displayed in the segment between the previous point and the current point.

In the following example, the user bit will be visible in the status word (object 2304h,
subindex 9) between points 3000 and 4000.

1. Set the Interpolation User Bits object (2403h) to the value 0.

2. Put data in the buffer by writing the following values to subindex 1 of the Interpolation
Data Record object (60C1h):

a. 2000

b. 3000

3. Set the Interpolation User Bits object (2403h) to the value 1.

4. Put data in buffer by writing the value 4000 to subindex 1 of the Interpolation Data
Record object (60C1h).

5. Set the Interpolation User Bits object (2403h) to the value 0.

6. Put data in the buffer by writing the following values to subindex 1 of the Interpolation
Data Record object (60C1h):

a. Write the value 5000 to object 60C1h, subindex 1.

b. Write the value 6000 to object 60C1h, subindex 1.

Moog Animatics Class 5 CANopen Guide Rev. H

Page 176 of 233

Object 2404h: Interpolation Sample Clock

Object 2404h: Interpolation Sample Clock

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

2404h 000 Interpolation Sample Clock 00000000h FFFFFFFFh 00000000h Yes Unsigned
32-bit

Read
Only

This object reports the 32-bit unsigned count of motor PID sample periods since the start of
interpolation.

Moog Animatics Class 5 CANopen Guide Rev. H

Page 177 of 233

Object 2500h: Encapsulated SmartMotor Command

Object 2500h: Encapsulated SmartMotor Command

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

2500h 000 Number of Entries 03h 03h 03h No Unsigned
8-bit

Read
Only

2500h 001 Command String No String: 32
bytes

Read
Write

2500h 002 Command Response No String: 32
bytes

Read
Only

2500h 003 Command Status 00h FFh 00h No Unsigned
8-bit

Read
Only

This object provides an interface to the SmartMotor command language. There is a 32-
character limit for the command string and for the response string. For details, see Command
Interface (Object 2500h) on page 48.

Moog Animatics Class 5 CANopen Guide Rev. H

Page 178 of 233

Drive and Motion Control Profile

Drive and Motion Control Profile
This section describes the objects in the Drive and Motion Control Profile. This set of objects in
the range 6000h to 67FFh implement the CiA 402 motion profile. This provides access to
common commands for controlling the motor.

Object 6040h: Control Word 181

Object 6041h: Status Word 183

Object 605Ah: Quick Stop Option Code 184

Object 605Dh: Halt Option Code 185

Object 605Eh: Fault Reaction Option Code 186

Object 6060h: Modes of Operation 187

Object 6061h: Modes of Operation Display 189

Object 6062h: Position Demand Value 190

Object 6063h: Position Actual Internal Value 191

Object 6064h: Position Actual Value 192

Object 6065h: Following Error Window 193

Object 606Bh: Velocity Demand Value 194

Object 606Ch: Velocity Actual Value 195

Object 6071h: Target Torque 196

Object 6074h: Torque Demand Value 197

Object 6077h: Torque Actual 198

Object 6079h: DC Link Circuit Voltage 199

Object 607Ah: Target Position 200

Object 607Ch: Home Offset 201

Object 6080h: Max Motor Speed 203

Object 6081h: Profile Velocity in PP Mode 204

Object 6083h: Profile Acceleration 205

Object 6084h: Profile Deceleration 206

Object 6085h: Quick Stop Deceleration 207

Object 6087h: Torque Slope 208

Object 608Fh: Position Encoder Resolution 209

Moog Animatics Class 5 CANopen Guide Rev. H

Page 179 of 233

Drive and Motion Control Profile

Object 6098h: Homing Method 210

Object 6099h: Homing Speeds 213

Object 609Ah: Homing Acceleration 214

Object 60C0h: Interpolation Sub-Mode Select 215

Object 60C1h: Interpolation Data Record 216

Object 60C2h: Interpolation Time Period 217

Object 60C4h: Interpolation Data Configuration 219

Object 60F4h: Following Error Actual Value 220

Object 60FBh: Position Control Parameter Set 221

Object 60FCh: Position Demand Internal Value 223

Object Description 223

Entry Description 223

Object 60FDh: Digital Inputs 224

Object 60FEh: Digital Outputs 226

Object 60FFh: Target Velocity 228

Object 6402h: Motor Type 229

Object 6502h: Supported Drive Modes 230

Object 67FFh: Single Device Type 231

Moog Animatics Class 5 CANopen Guide Rev. H

Page 180 of 233

Object 6040h: Control Word

Object 6040h: Control Word

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

6040h 000 Control Word 0000h FFFFh 0000h Yes Unsigned
16-bit

Read
Write*

*Write access is restricted when the remote bit is cleared with the CANCTL(13,0) command.

The control word is the primary method of commanding motion in the SmartMotor. The
following features are accessed with this object:

l Enable or disable the motor drive

l Quick stop function

l Halt function

l New position setpoint in Profile Position mode (PP)

l Start motion: Profile Position (PP), Profile Velocity (PV), Torque (TQ), Interpolation
(IP), and Homing (HM)

For more details, see Control Words, Status Words and the Drive State Machine on page 51.

The SmartMotor =CAN and RCAN commands can be used to assign/report the value of the
NMT state, control word (object 6040h) and status word (object 6041h). For details, see
=CAN, RCAN on page 80.

The following table provides a listing of the available bits, their names and descriptions.

Moog Animatics Class 5 CANopen Guide Rev. H

Page 181 of 233

Object 6040h: Control Word

Bit Name Description

0 Switch on These bits control the CiA 402 profile drive state machine. For
more details, see CiA 402 Profile Motion State Machine on page
51.1 Enable voltage

2 Quick stop

3 Enable operation

4 Operation mode
specific: "New
setpoint"

Used by PP, HM, and IP modes. In PP mode: all positions must be
set with a rising transition of this bit. In IP mode: rising edge of
this bit is used to initially start operation but not required at each
data point.

5 Operation mode
specific:
"Change set
immediately"

Used in PP mode; other modes can leave as 0.

6 Operation mode
specific: "Rel-
ative"

In PP mode, this sets a position relative target (PRT=) instead of a
position target (PT=) type of move.

7 Fault reset Rising transition resets fault in all modes of operation. If the fault
condition still exists (status word object 6041h), then the cause
has not been cleared.

8 Halt If this bit is set, then the motor will stop from any mode of oper-
ation. The action taken is set in advance by the halt option code.

9 Operation mode
specific

Used in PP mode; other modes can leave as 0.

10 Reserved Reserved by the CiA 402 specification.

11 Manufacturer-
specific:
Reserved for
user application

Reserved for the user's application. This bit is visible in a program
through RCAN(2).

12 Manufacturer-
specific

Do not use; leave at 0.

13 Manufacturer-
specific

Do not use; leave at 0.

14 Manufacturer-
specific

Do not use; leave at 0.

15 Manufacturer-
specific: Reset
interpolation buf-
fer

Used to reset the IP mode buffer.

Moog Animatics Class 5 CANopen Guide Rev. H

Page 182 of 233

Object 6041h: Status Word

Object 6041h: Status Word

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

6041h 000 Status Word 0000h FFFFh Yes Unsigned
16-bit

Read
Only

This object indicates the current state of the drive. For more details, see Control Words,
Status Words and the Drive State Machine on page 51. The SmartMotor =CAN and RCAN
commands can be used to assign/report the value of the NMT state, control word (object
6040h) and status word (object 6041h). For details, see =CAN, RCAN on page 80.

Bit Name Description

0 Ready to switch on The bits 0–3, 5 and 6 represent the state of the CiA 402 pro-
file drive state machine. For more details, see Control Words,
Status Words and the Drive State Machine on page 51.

1 Switched on

2 Operation enabled

3 Fault

4 Voltage enabled Sufficient voltage is present to operate the motor.

5 Quick stop The bits 0–3, 5 and 6 represent the state of the CiA 402 pro-
file drive state machine. For more details, see Control Words,
Status Words and the Drive State Machine on page 51.6 Switch on disabled

7 Warning Not used (reports as 0).

8 Manufacturer-specific Used by the GOSUB R2 object (2309h) to indicate the sub-
routine is busy.

9 Remote Controlled through CANCTL(13,x). This bit indicates if the
motor is accepting commands from the CANopen network.
Default is 1, which indicates the motor is accepting com-
mands.

10 Target reached "Target reached" — this is operation-mode specific. It
indicates the speed, position, or torque profile was achieved.

In Homing (HM) mode, the motor has come to rest after
finding the home position. However, the motor is not
specifically at the home position because a deceleration
distance was required after finding the position.

11 Internal limit active "Limit" — set if a position limit is currently showing a fault.

12 Operation mode spe-
cific

"Setpoint acknowledgment" — this is operation-mode specific
to PP, IP and PV modes. It indicates a new setpoint was
received.

In Homing (HM) mode, the homing process has found the
home position, and the "position actual" has been adjusted to
the new home position and home offset.

13 Operation mode spe-
cific

"Move error" — set if a position error occurred.

14 Manufacturer-specific User-controlled bit through CANCTL(12,x).

15 Manufacturer-specific Not used (reports as 0).

Moog Animatics Class 5 CANopen Guide Rev. H

Page 183 of 233

Object 605Ah: Quick Stop Option Code

Object 605Ah: Quick Stop Option Code

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

605Ah 000 Quick Stop Option Code –1 2 2 No Signed
16-bit

Read
Write

This object determines what action should be taken if the quick stop function is active. That
function is activated by bit 2 of the Control Word object (6040h). For details, see Object
6040h: Control Word on page 181.

In Profile Torque (TQ) mode, quick stop option code values 1 and 2 will reduce the torque
according to the torque slope rate because this is not a servo mode that can follow the
deceleration or quick-stop deceleration rates.

Value Function

–1 MTB (drive turned off, resists rotation)

0 Disable drive (drive turned off, free to rotate)

1 Decelerate on the profile deceleration ramp (see Object
6084h: Profile Deceleration on page 206); drive will
automatically leave the quick stop state.

2 Decelerate on the quick stop ramp (see Object 6085h:
Quick Stop Deceleration on page 207); drive will
automatically leave the quick stop state

3–8 Not supported

9–32767 Reserved

If using Follow or Cam mode, be aware that these decelerations are not applied. The
Animatics MFD() command controls the deceleration in those cases.

Moog Animatics Class 5 CANopen Guide Rev. H

Page 184 of 233

Object 605Dh: Halt Option Code

Object 605Dh: Halt Option Code

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

605Dh 000 Halt Option Code 1 2 1 No Signed
16-bit

Read
Write

This object determines what action should be taken if the halt bit (bit 8) is set in Control Word
object (6040h). For details, see Object 6040h: Control Word on page 181.

In Profile Torque (TQ) mode, halt option code values 1 and 2 will reduce the torque according
to the torque slope rate because this is not a servo mode that can follow the deceleration or
quick-stop deceleration rates.

Value Function

0 Reserved

1 (Default) Decelerate on the profile deceleration ramp
(see Object 6084h: Profile Deceleration on page 206)

2 Slow down on quick-stop ramp

3–4 Not supported

5–32767 Reserved

If using Follow or Cam mode, be aware that these decelerations are not applied. The
Animatics MFD() command controls the deceleration in those cases.

Moog Animatics Class 5 CANopen Guide Rev. H

Page 185 of 233

Object 605Eh: Fault Reaction Option Code

Object 605Eh: Fault Reaction Option Code

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

605Eh 000 Fault Reaction Option Code –1 1* -1 Yes Signed
16-bit

Read
Write

This object determines what action should be taken if a fault occurs in the motor. Causes of a
fault include: limit switches, software limits, overtemperature, excessive position error, etc.

In Profile Torque (TQ) mode, fault reaction option code value 1 will reduce the torque
according to the torque slope rate because this is not a servo mode that can follow the
deceleration rate.

Value Function

–1 (Default) MTB (drive turned off, resists rotation)

0 Disable drive (drive turned off, free to rotate)

1 Decelerate on the profile deceleration ramp (see Object
6084h: Profile Deceleration on page 206)

2 Not supported

3 Not supported

4 Not supported

5–32767 Reserved

If using Follow or Cam mode, be aware that these decelerations are not applied. The
Animatics MFD() command controls the deceleration in those cases.

Similar SmartMotor Commands: FSA()

Moog Animatics Class 5 CANopen Guide Rev. H

Page 186 of 233

Object 6060h: Modes of Operation

Object 6060h: Modes of Operation

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

6060h 000 Modes of Operation -12** 8** 0 Yes Signed
8-bit

Read
Write*

*Write access is restricted when the remote bit is cleared with the CANCTL(13,0) command.

**The value 0 is allowed and will not return error (but is does not enter a mode of motion.) . Class 5 firmware
doesn't necessarily return a range error. Anything not supported in the table below may be silently ignored. Class 5
supported mode 8 (CSP) as of firmware version 5.0.4.46 / 5.98.4.46 or later.

The type of motion control is selected by setting this object to one of the values shown in the
following table. The new setting will take effect immediately. When transitioning to
Interpolated Position (IP) mode or Profile Position (PP) mode, the motor will stop, there must
be a rising transition on bit 4 of the control word and then motion will begin in the new mode.

The value read back from this object does not indicate the current mode of operation; it is
only an indication of what was written previously and not an indication of the motor's current
state. Use the Modes of Operation Display object (6061h) to see the currently active mode.
For details, see Object 6061h: Modes of Operation Display on page 189.

Value -11 or -12 should be used as the mode of operation where follow or cam mode is
accepting data from the CANopen data object and position profile mode is active (dual
trajectory).

Value Motion Control Mode

-12 Cam from CANopen encoder + position mode1,2

-11 Follow CANopen encoder + position mode

-10 to -4 Reserved / not supported

–3 Step and direction input

–2 Follow quadrature encoder input

–1 Reserved / not supported

0 Null (not an error, but not a mode of motion either.)

1 Profile Position (PP) mode

2 Reserved / not supported

3 Profile Velocity (PV) mode

4 Torque Profile (TQ) mode

5 Reserved / not supported

6 Homing (HM) mode

7 Interpolated Position (IP) mode3

8 Cyclic Sync Position (CSP) mode (as of firmware version
5.0.4.46 / 5.98.4.46 or later)

9 to 10 Reserved / not supported

Moog Animatics Class 5 CANopen Guide Rev. H

Page 187 of 233

Object 6060h: Modes of Operation

Value Motion Control Mode

11 to 127 Reserved / not supported

1. Cam mode operation requires user program to configure cam.
2. Cam mode still uses MFA, MFD, MFMUL, MFDIV to control encoder input
into cam master. See the SmartMotor Developer's Guide for details.
3. This mode is not supported in the standard release; consult Moog Anim-
atics for further information.

Similar SmartMotor Commands: MV, MP, MT, MFR, MSR

Moog Animatics Class 5 CANopen Guide Rev. H

Page 188 of 233

Object 6061h: Modes of Operation Display

Object 6061h: Modes of Operation Display

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

6061h 000 Modes of Operation Display 80h 7Fh 00h Yes Signed
8-bit

Read
Only

Displays the current mode of motion control; refer to Object 6060h: Modes of Operation on
page 187.

Similar SmartMotor Commands: RMODE

Moog Animatics Class 5 CANopen Guide Rev. H

Page 189 of 233

Object 6062h: Position Demand Value

Object 6062h: Position Demand Value

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

6062h 000 Position Demand Value 80000000h 7FFFFFFFh 00000000h Yes Signed
32-bit

Read
Only

This object reports the position calculated by the motion profile; it takes into account the
acceleration and velocity targets. Because user units are not supported, the value is in units of
encoder counts, which are the same units as those for object 60FCh. For details, see Object
60FCh: Position Demand Internal Value on page 223.

When the motor drive is inactive or in torque mode, the value reported is simply the current
position.

Similar SmartMotor Commands: RPC

Moog Animatics Class 5 CANopen Guide Rev. H

Page 190 of 233

Object 6063h: Position Actual Internal Value

Object 6063h: Position Actual Internal Value

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

6063h 000 Position Actual Internal
Value 80000000h 7FFFFFFFh 00000000h Yes Signed

32-bit
Read
Only

This object reports the current position of the motor shaft in units of encoder counts.

Similar SmartMotor Commands: RPA

Moog Animatics Class 5 CANopen Guide Rev. H

Page 191 of 233

Object 6064h: Position Actual Value

Object 6064h: Position Actual Value

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

6064h 000 Position Actual Value 80000000h 7FFFFFFFh 00000000h Yes Signed
32-bit

Read
Only

This object reports the current position of the motor shaft in units of encoder counts. Because
user units are not supported, the value is in units of encoder counts, which are the same units
as those for object 6063h. For details, see Object 6063h: Position Actual Internal Value on
page 191.

Similar SmartMotor Commands: RPA

Moog Animatics Class 5 CANopen Guide Rev. H

Page 192 of 233

Object 6065h: Following Error Window

Object 6065h: Following Error Window

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

6065h 000 Following Error Window 00000000h 0003FFFFh* 000003E8h Yes Unsigned
32-bit

Read
Write

*The value -1 is allowed. Class 5 firmware doesn't necessarily return a range error, the high limit shown is what
will be accepted by the firmware. Anything higher may be silently ignored.

This object defines the range of tolerated deviation for the actual position relative to the
calculated demand position. If the actual position is out of range, a following-error fault
occurs and the drive will react according to the fault reaction. The units of this object are in
encoder counts.

Similar SmartMotor Commands: EL=, REL

Moog Animatics Class 5 CANopen Guide Rev. H

Page 193 of 233

Object 606Bh: Velocity Demand Value

Object 606Bh: Velocity Demand Value

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

606Bh 000 Velocity Demand Value 80000000h 7FFFFFFFh 00000000h Yes Signed
32-bit

Read
Only

This object reports the velocity calculated by the motion profile; it takes into account
acceleration and velocity targets. The units are: (encoder counts per sample period) * 65536.

Similar SmartMotor Commands: RVC

Moog Animatics Class 5 CANopen Guide Rev. H

Page 194 of 233

Object 606Ch: Velocity Actual Value

Object 606Ch: Velocity Actual Value

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

606Ch 000 Velocity Actual Value 80000000h 7FFFFFFFh 00000000h Yes Signed
32-bit

Read
Only

This object reports the actual velocity of the motor shaft. The units are: (encoder counts per
sample period) * 65536.

Similar SmartMotor Commands: RVA

Moog Animatics Class 5 CANopen Guide Rev. H

Page 195 of 233

Object 6071h: Target Torque

Object 6071h: Target Torque

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

6071h 000 Target Torque -1000 1000 0000h Yes Signed
16-bit

Read
Write*

*Write access is restricted when the remote bit is cleared with the CANCTL(13,0) command.

This object is the target value for the motor when operating in Profile Torque (TQ) mode. The
value written will be reached at a rate specified by the Torque Slope object (6087h). When the
Control Word object (6040h) has enabled motion, the value written here will be accepted
immediately. The units of this value are per thousand of the motor's rated torque.

A value of 1000 in this object is equivalent to T=32767 in the corresponding SmartMotor
command. In other words, DS402 considers 1000 to be full-scale torque, whereas 32767 is
considered to be full-scale torque for the SmartMotor serial commands.

Similar SmartMotor Commands: T=, RT

Moog Animatics Class 5 CANopen Guide Rev. H

Page 196 of 233

Object 6074h: Torque Demand Value

Object 6074h: Torque Demand Value

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

6074h 000 Torque Demand Value 8000h 7FFFh 0000h Yes Signed
16-bit

Read
Only

This object provides the motor's demand torque from the PID when in Position (PP), Velocity
(PV) or interpolation (IP) mode, or the torque profile when in Torque (TQ) mode. The units of
this value are per thousand of the motor's rated torque.

NOTE: This object represents the requested value from the Torque profile (in TQ
mode) or the PID (in all other closed-loop servo modes). However, due to current
limits, torque profile, etc., the motor may not be able to deliver the requested
torque.

A value of 1000 in this object is equivalent to T=32767 in the corresponding SmartMotor
command. In other words, DS402 considers 1000 to be full-scale torque, whereas 32767 is
considered to be full-scale torque for the SmartMotor serial commands.

Moog Animatics Class 5 CANopen Guide Rev. H

Page 197 of 233

Object 6077h: Torque Actual

Object 6077h: Torque Actual

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

6077h 000 Torque Actual 8000h 7FFFh 0000h Yes Signed
16-bit

Read
Only

This object reports the actual torque based on measured current. The value is reported in
units per thousand of rated torque.

NOTE: This object attempts to report the actual measured torque based on the
current in the motor windings. However, not all SmartMotor modes of commutation
can successfully measure current-producing torque. Therefore, this command is
only valid in the M-style motor while in MDC commutation mode. Other modes will
report the same data as object 6074h. For details, see Object 6074h: Torque
Demand Value on page 197.

A value of 1000 in this object is equivalent to T=32767 in the corresponding SmartMotor
command. In other words, DS402 considers 1000 to be full-scale torque, whereas 32767 is
considered to be full-scale torque for the SmartMotor serial commands.

Moog Animatics Class 5 CANopen Guide Rev. H

Page 198 of 233

Object 6079h: DC Link Circuit Voltage

Object 6079h: DC Link Circuit Voltage

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

6079h 000 DC Link Circuit Voltage 00000000h FFFFFFFFh Yes Unsigned
32-bit

Read
Only

This object describes the supplied voltage, in millivolts, measured at the motor's power
inverter.

Similar SmartMotor Commands: RUJA

Moog Animatics Class 5 CANopen Guide Rev. H

Page 199 of 233

Object 607Ah: Target Position

Object 607Ah: Target Position

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

607Ah 000 Target Position 80000000h 7FFFFFFFh 00000000h Yes Signed
32-bit

Read
Write

This object specifies the target position that the motor should move to in Profile Position (PP)
mode. The units of this object are in encoder counts. When the "relative" bit (bit 6) of the
Control Word object (6040h) is set, the value written is added to the position currently
demanded.

The target position will be approached according to the Profile Acceleration object (6083h),
Profile Deceleration object (6084h), and Profile Velocity object (6081h).

This object is not immediately accepted when written. It is only accepted when the "New
setpoint" bit (bit 4) of the Control Word object (6040h) has a rising transition.

Similar SmartMotor Commands: PT=, PRT=, RPT, RPRT

Moog Animatics Class 5 CANopen Guide Rev. H

Page 200 of 233

Object 607Ch: Home Offset

Object 607Ch: Home Offset

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

607Ch 000 Home Offset 80000000h 7FFFFFFFh 0 Yes Signed
32-bit

Read
Write

This object shifts the origin of the actual position when the Homing (HM) mode is executed.
When HM mode is commanded to begin, the home position is first discovered. The home
position is the physical location of the switch or index per the specific homing method. Once
found, that physical location is assigned the negative of the home offset value:

Home position = –Home offset

The home position is assigned with –home offset. See the following example.

Moog Animatics Class 5 CANopen Guide Rev. H

Page 201 of 233

Object 607Ch: Home Offset

Moog Animatics Class 5 CANopen Guide Rev. H

Page 202 of 233

Object 6080h: Max Motor Speed

Object 6080h: Max Motor Speed

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

6080h 000 Max Motor Speed 00000000h FFFFFFFFh
Set accord-
ing to fact-
ory settings

Yes Unsigned
32-bit

Read
Write

This object specifies the speed limit for the motor in either direction. The units are in
revolutions per minute (rpm). If this value is exceeded, the motor will enter a fault condition.

The value is specific to each SmartMotor model. For details, see the Moog Animatics Product
Catalog, which is available on the Moog Animatics website.

Similar SmartMotor Commands: VL=, RVL

Moog Animatics Class 5 CANopen Guide Rev. H

Page 203 of 233

Object 6081h: Profile Velocity in PP Mode

Object 6081h: Profile Velocity in PP Mode

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

6081h 000 Profile Velocity in PP Mode 00000000h 7FFFFFFFh 00000000h Yes Unsigned
32-bit

Read
Write*

*Write access is restricted when the remote bit is cleared with the CANCTL(13,0) command.

This object only applies to Profile Position (PP) mode. The position profile will accelerate to
this speed and remain at this speed until deceleration begins for approach of the position
target. The units are: (encoder counts per sample period) * 65536.

Also, refer to Object 60FFh: Target Velocity on page 228.

Similar SmartMotor Commands: VT= (NOTE: The value written to 6081h does not appear
when reading back VT.)

Moog Animatics Class 5 CANopen Guide Rev. H

Page 204 of 233

Object 6083h: Profile Acceleration

Object 6083h: Profile Acceleration

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

6083h 000 Profile Acceleration 00000000h 7FFFFFFFh 00000004h Yes Unsigned
32-bit

Read
Write*

*Write access is restricted when the remote bit is cleared with the CANCTL(13,0) command.

This object is the acceleration in the Profile Velocity (PV) mode and the Profile Position (PP)
mode. The units are: (encoder counts per (sample2)) * 65536.

Similar SmartMotor Commands: AT=, ADT=, RAT

Moog Animatics Class 5 CANopen Guide Rev. H

Page 205 of 233

Object 6084h: Profile Deceleration

Object 6084h: Profile Deceleration

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

6084h 000 Profile Deceleration 00000000h 7FFFFFFFh 00000004h Yes Unsigned
32-bit

Read
Write*

*Write access is restricted when the remote bit is cleared with the CANCTL(13,0) command.

This object is the deceleration in the Profile Velocity (PV) mode and the Profile Position (PP)
mode. The units are: (encoder counts per (sample2)) * 65536.

Similar SmartMotor Commands: DT=, ADT=, RDT

Moog Animatics Class 5 CANopen Guide Rev. H

Page 206 of 233

Object 6085h: Quick Stop Deceleration

Object 6085h: Quick Stop Deceleration

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

6085h 000 Quick Stop Deceleration 00000000h 7FFFFFFFh 7FFFFFFFh Yes Unsigned
32-bit

Read
Write

This object is used to stop the drive with the quick stop function, which is commanded from bit
2 of the Control Word object (6040h). The value is the deceleration used to stop the motor if
the quick stop command is given and the Quick Stop Option Code object (605Ah) is set to 2.
The units are: (encoder counts per (sample2)) * 65536.

For additional details, see Object 6040h: Control Word on page 181 and Object 605Ah: Quick
Stop Option Code on page 184.

Moog Animatics Class 5 CANopen Guide Rev. H

Page 207 of 233

Object 6087h: Torque Slope

Object 6087h: Torque Slope

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

6087h 000 Torque Slope 00000000h FFFFFFFFh 007A12F4h Yes Unsigned
32-bit

Read
Write*

*Write access is restricted when the remote bit is cleared with the CANCTL(13,0) command.

This object is the torque mode acceleration/deceleration slope. The units are in torque units
per second. To put this into context, a value of 1000 in this object can ramp the SmartMotor to
full torque in one second.

In SmartMotor commands, the corresponding command is TS=, where the units are different.
In the TS= command, the units are: ("T=" per sample)*65536. Therefore, a value of 1000 in
this object is equivalent to TS=268427, assuming the default PID rate of 8000 Hz.

For related information, see Object 6071h: Target Torque on page 196.

Similar SmartMotor Commands: TS=, RTS

Moog Animatics Class 5 CANopen Guide Rev. H

Page 208 of 233

Object 608Fh: Position Encoder Resolution

Object 608Fh: Position Encoder Resolution

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

608Fh 000 Number of Entries 02h 02h 02h No Unsigned
8-bit

Read
Only

608Fh 001 Encoder Counts 00000000h FFFFFFFFh Encoder res-
olution. Yes Unsigned

32-bit
Read
Only

608Fh 002 Motor Revolutions 00000000h FFFFFFFFh 00000001h Yes Unsigned
32-bit

Read
Only

This object defines the resolution of the encoder. There are two subindex objects that describe
the encoder resolution — subindex 001: Encoder Counts and subindex 002: Motor Revolutions.
To determine the encoder resolution (number of encoder counts per motor revolution), divide
the value of subindex 1 by the value of subindex 2. The units are in encoder counts.

Moog Animatics Class 5 CANopen Guide Rev. H

Page 209 of 233

Object 6098h: Homing Method

Object 6098h: Homing Method

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

6098h 000 Homing Method 80h 7Fh 0 Yes Signed
8-bit

Read
Write

This object selects the method used in Homing (HM) mode. This must be set before starting a
homing process, and it should not be changed while HM mode is actively seeking home.

NOTE: The homing input is I/O 6. For more details on I/O, consult theClass 5
SmartMotor™ Installation and Startup Guide and the SmartMotor™ Developer's
Guide.

Homing
Method
Value

Description

1, 2 Home position is the first index in the positive direction from the negative limit
switch (1), or in the negative direction from the positive limit switch (2)
(requires that limit switches are enabled).

17, 18 Home position is at the negative limit switch (17) or at the positive limit switch
(18)
(requires that limit switches are enabled).

33, 34 Home position is the location of the first index in the negative direction (33) or
positive direction (34) from the current position.

35 Accept the current position as the home position.
(current position = –home offset)

NOTE: Methods 1, 2, 33 and 34 make use of the index of the internal encoder,
which provides a precise location (switches may have some position uncertainty).
The construction of the machine should consider the proximity of the index mark to
the switch threshold. The index location should be at 180 degrees rotation of the
encoder (RRES/2) from the switch threshold. This will ensure that the index mark
does not fall within the uncertainty of the switch transition.

NOTE: Methods 1, 2, 17 and 18 make use of the limit switches. Limit switches must
be enabled and physically wired to the motor. Under these methods, the homing
process will not start if the relevant limit has been disabled.

Moog Animatics Class 5 CANopen Guide Rev. H

Page 210 of 233

Object 6098h: Homing Method

The following figures illustrate the differences between the methods that use an index pulse
and those that do not. For example, methods 1 and 2 use an index pulse signal, while methods
17 and 18 do not.

Method 2

Method 1

Index Pulse
Signal

Methods 1 & 2 - Limit Switches and Index Pulses

Limit Switches

-LS +LS

Limit Switches

Method 18

Method 17

Methods 17 & 18 - Limit Switches no Index Pulses

-LS +LS

The following figures illustrate homing methods 7-14. Note the following:

l the number in the hexagon is the selected homing mode

l the solid circle is the location of the motor when homing mode started, each possibility
is shown

Moog Animatics Class 5 CANopen Guide Rev. H

Page 211 of 233

Object 6098h: Homing Method

Home Switch
Signal

Index Pulse
Signal

Methods 7-10: Positive Initial Motion

7

8

9

10

9

107

8

7

8

9

10

Positive Limit
Switch

Home Switch
Signal

Index Pulse
Signal

Methods 11-14: Negative Initial Motion

Negative Limit
Switch

1214

1114

12

1113

13

13

14 12

11

Moog Animatics Class 5 CANopen Guide Rev. H

Page 212 of 233

Object 6099h: Homing Speeds

Object 6099h: Homing Speeds

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

6099h 000 Number of Entries 02h 02h 02h No Unsigned
8-bit

Read
Only

6099h 001 Speed during search for
switch 00000000h 7FFFFFFFh 00000000h Yes Unsigned

32-bit
Read
Write

6099h 002 Speed during search for
zero 00000000h 7FFFFFFFh 00000000h Yes Unsigned

32-bit
Read
Write

This object only applies to Homing (HM) mode. The homing profile will accelerate to these
speeds depending on the segment of the homing routine that is in use.

In general, the "speed during search for switch" segment is expected to be faster than the
"speed during search for zero" segment. The "speed during search for zero" segment is
selected when the homing mode expects to find the home position with the move it is
currently starting. If the homing mode expects an intermediate switch event before the home
position, then the "speed during search for switch" segment is selected (for example, a limit
switch is tripped before changing direction to find the home index).

The units are: (encoder counts per sample period) * 65536.

Moog Animatics Class 5 CANopen Guide Rev. H

Page 213 of 233

Object 609Ah: Homing Acceleration

Object 609Ah: Homing Acceleration

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

609Ah 000 Homing Acceleration 00000000h 7FFFFFFFh 00000004h Yes Unsigned
32-bit

Read
Write

This object is the acceleration and deceleration in Homing (HM) mode. The units are: (encoder
counts per (sample2)) * 65536.

Moog Animatics Class 5 CANopen Guide Rev. H

Page 214 of 233

Object 60C0h: Interpolation Sub-Mode Select

Object 60C0h: Interpolation Sub-Mode Select

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

60C0h 000 Interpolation Sub-Mode
Select 8000h 0000h 0000h Yes Signed

16-bit
Read
Write

Interpolation (IP) mode uses the position data object (60C1h) and the interpolation time
period object (60C2h) in one of the following ways:

l Linear interpolation (default): follows a linear set of positions in the times between the
data points. The velocity during each segment between points is constant. The
disadvantage is that the velocity changes abruptly at the data points; the advantage is
that the actual path taken between points is very predictable.

l Spline interpolation: uses the current point, the next point, and the previous point to
generate curvature of the path over time. This results in a more continuous velocity.
Also, following of curved shapes is typically more accurate between points. However,
the disadvantage can be certain cases where an overshoot of position can occur. While
this is generally avoided in the algorithm, extreme cases will overshoot.

The following table shows the possible sub-mode functions. The sub-mode data is read from
the buffer along with the associated data point; the sub-mode applies to the segment between
that point and the previous point.

Value Function

–3 Spline Interpolation

0 Linear Interpolation

1–32767 Reserved

In the following example, the sub-mode will use Spline Interpolation between points 3000 and
4000.

1. Set the Interpolation Sub-Mode Select object (60C0h) to the value 0.

2. Put data in the buffer by writing the following values to subindex 1 of the Interpolation
Data Record object (60C1h):

a. 2000

b. 3000

3. Set the Interpolation Sub-Mode Select object (60C0h) to the value –3.

4. Put data in buffer by writing the value 4000 to subindex 1 of the Interpolation Data
Record object (60C1h).

5. Set the Interpolation Sub-Mode Select object (60C0h) to the value 0.

6. Put data in the buffer by writing the following values to subindex 1 of the Interpolation
Data Record object (60C1h):

a. 5000

b. 6000

Moog Animatics Class 5 CANopen Guide Rev. H

Page 215 of 233

Object 60C1h: Interpolation Data Record

Object 60C1h: Interpolation Data Record

Object subindex Description Low
Limit

High
Limit Default PDO

Map
Data
type Access

60C1h 000 Number of Entries 01h 02h 02h No Unsigned
8-bit

Read
Only

60C1h 001 Data Record 1 80000000h 7FFFFFFFh 00000000h Yes Signed
32-bit

Read
Write

60C1h 002 Data Record 2 (not sup-
ported) 80000000h 7FFFFFFFh 00000000h Yes Signed

32-bit N/A

This object is used to enter the position data required in Interpolation (IP) mode. Only
subindex 1 is used; subindex 2 is not used.

When data is written to subindex 1, it is entered into the buffer. Also, the current values of the
Interpolation User Bits object (2403h), Interpolation Sub-Mode object (60C0h) and the
Interpolation Time object (60C2h) are captured and entered into the buffer with the same
record as the position data.

The value read from this object is the most recent value written to this object — it is not an
indication of the motor's current state.

NOTE: Object 60C1h, subindex 1, "Data Record 1" can only be written if the "buffer
clear" property (object 60C4h, subindex 6) is set to a 1. By default, writing to a
data record will produce an error until this action is taken.

NOTE: Object 60C1h, subindex 2, "Data Record 2" is not to be used.

Moog Animatics Class 5 CANopen Guide Rev. H

Page 216 of 233

Object 60C2h: Interpolation Time Period

Object 60C2h: Interpolation Time Period

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

60C2h 000 Number of Elements 00h FFh 02h No Unsigned
8-bit

Read
Only

60C2h 001 Interpolation time units 00h FFh 01h Yes Unsigned
8-bit

Read
Write

60C2h 002 Interpolation time index 80h 3Fh FDh (-3) Yes Signed
8-bit

Read
Write

This object is used for Interpolated Position (IP) mode. The time written is captured when a
data record is written using subindex 1 of the Interpolation Data Record object (60C1h). The
time data is read from the buffer along with the associated data point. The time period applies
to the segment between that point and the previous point. After it is started, the interpolation
process reads data points out of the interpolation buffer once per the time period.

The default time index is –3, which gives the time units in milliseconds.

Interpolation
Time Index Value

–128 to –4 Not allowed (returns SDO error)

–3 0.001 seconds (default)

–2 0.01 seconds

–1 0.1 seconds

 0 1 second

1 to 127 Not recommended

The representation of the time is a combination of a value (time units) and a decimal shift
(time index):

Time = (time units) * 10(time index) seconds

Desired time range Resolution Suggested
Time Index

Suggested
Time Units

1 to 255 milliseconds 0.001 seconds –3 1 to 255

10 milliseconds to 2.55 seconds 0.010 seconds –2 1 to 255

100 milliseconds to 4 seconds 0.100 seconds –1 1 to 40

1 second to 4 seconds 1.000 seconds 0 1 to 4

Moog Animatics Class 5 CANopen Guide Rev. H

Page 217 of 233

Object 60C2h: Interpolation Time Period

In the following example, the time segment will be the longer time of 2 seconds between point
3000 and point 4000.

1. Set subindex 1 of the Interpolation Time Period object (60C2h) to the value 1.

2. Set subindex 2 of the Interpolation Time Period object (60C2h) to the value 0, which
represents seconds.

3. Put data in the buffer by writing the following values to subindex 1 of the Interpolation
Data Record object (60C1h):

a. 2000

b. 3000

4. Set subindex 1 of the Interpolation Time Period object (60C2h) to the value 2.

5. Put data in buffer by writing the value 4000 to subindex 1 of the Interpolation Data
Record object (60C1h).

6. Set subindex 1 of the Interpolation Time Period object (60C2h) to the value 1.

7. Put data in the buffer by writing the following values to subindex 1 of the Interpolation
Data Record object (60C1h):

a. 5000

b. 6000

Moog Animatics Class 5 CANopen Guide Rev. H

Page 218 of 233

Object 60C4h: Interpolation Data Configuration

Object 60C4h: Interpolation Data Configuration

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

60C4h 000 Number of Entries 00h FFh 06h No Unsigned
8-bit

Read
Only

60C4h 001 Maximum buffer size 00000000h FFFFFFFFh 0000002dh Yes Unsigned
32-bit

Read
Only

60C4h 002 Actual buffer size 00000000h FFFFFFFFh 0000002dh Yes Unsigned
32-bit

Read
Only

60C4h 003 Buffer organization 00h FFh 00h Yes Unsigned
8-bit

Read
Only

60C4h 004 Buffer position 0000h FFFFh 0000h Yes Unsigned
16-bit

Read
Only

60C4h 005 Size of data record 04h 04h 04h Yes Unsigned
8-bit

Read
Only

60C4h 006 Buffer clear 00h 01h 00h Yes Unsigned
8-bit

Write
Only

This object controls some miscellaneous aspects of the Interpolation mode buffer.

The subindex objects have the following functions:

l Subindex 1: Cannot be changed because the SmartMotor buffer cannot be resized. This
object can be ignored.

l Subindex 2: Cannot be changed because the buffer cannot be resized. The value is 2Dh
or 45 (decimal); this is the number of data records that can be held in the buffer. Each
record contains information about the position, time, user bits and Interpolation mode
for that segment.

l Subindex 3: Cannot be set. It reports the value 0, which indicates that the buffer is a
FIFO type — data records are written into one end of the buffer and the motor firmware
reads data out of the other end.

l Subindex 4: Reports the number of occupied buffer slots.

l Subindex 5: Not implemented.

l Subindex 6: Cannot be read. To control buffer access, write one of the values from the
following table.

Subindex 6 Function

0 Clear input buffer, access disabled (will not accept writes to
object 60C1h), clear all IP data records

1 Enable write access to the buffer (object 60C1h)
2–255 Reserved

Moog Animatics Class 5 CANopen Guide Rev. H

Page 219 of 233

Object 60F4h: Following Error Actual Value

Object 60F4h: Following Error Actual Value

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

60F4h 000 Following Error Actual Value 80000000h 7FFFFFFFh 00000000h Yes Signed
32-bit

Read
Only

This object reports the actual value of the following error. This is the difference between the
demand position and the actual position:

Following Error Actual Value object (60F4h) = Position Demand Value object
(6062h) – Position Actual Value object (6064h)

Similar SmartMotor Commands: REA

Moog Animatics Class 5 CANopen Guide Rev. H

Page 220 of 233

Object 60FBh: Position Control Parameter Set

Object 60FBh: Position Control Parameter Set

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

60FBh 000 Number of Entries 00h FFh 0Ah (10) No Unsigned
8-bit

Read
Only

60FBh 001 KP, Proportional Gain 0000h FFFFh From
EEPROM Yes Unsigned

16-bit
Read
Write*

60FBh 002 KI, Integral Gain 0000h 7FFFh From
EEPROM Yes Unsigned

16-bit
Read
Write*

60FBh 003 KL, Integral Limit 0000h 7FFFh 7FFFh Yes Unsigned
16-bit

Read
Write*

60FBh 004 KD, Derivative Gain 0000h FFFFh From
EEPROM Yes Unsigned

16-bit
Read
Write*

60FBh 005 KS, Derivative Damping
Sample Rate 00h 03h 01h Yes Unsigned

8-bit
Read
Write*

60FBh 006 KV, Velocity Feedforward
Gain 0000h FFFFh From

EEPROM Yes Unsigned
16-bit

Read
Write*

60FBh 007 KA, Acceleration Feed-
forward Gain 0000h FFFFh From

EEPROM Yes Unsigned
16-bit

Read
Write*

60FBh 008 KG, Gravitational Offset FF000000h 00FFFFFFh From
EEPROM Yes Signed

32-bit
Read
Write*

60FBh 009 N/A 0000h FFFFh 0000h No Unsigned
16-bit

Read
Only

60FBh 010 Position Loop Control 00h FFh 00h Yes Unsigned
8-bit

Read
Write*

*Write access is restricted when the remote bit is cleared with the CANCTL(13,0) command.

This object contains manufacturer-specific parameters for the drive controller. For the
SmartMotor, this is primarily used to set the PID parameters (see the following table).

NOTE: The PID parameters do not take effect until subindex 10 is written.

For more details on these PID parameters, see the SmartMotor™ Developer's Guide.

Similar SmartMotor Commands: KP=, RKP, KI=, RKI, KL=, RKL, KD=, RKD, KS=, RKS,
KV=, RKV, KA=, RKA, KG=, RKG, F

Moog Animatics Class 5 CANopen Guide Rev. H

Page 221 of 233

Object 60FBh: Position Control Parameter Set

Sub-
index

SMI
Command

PID
Parameter Function

1 RKP, KP= KP Proportional coefficient

2 RKI, KI= KI Integral coefficient

3 RKL, KL= KL Integral limit

4 RKD, KD= KD Derivative coefficient

5 RKS, KS= KS Velocity filter option for KD (value is 0,
1, 2 or 3; larger numbers specify
longer filter times)

6 RKV, KV= KV Velocity feed-forward gain

7 RKA, KA= KA Acceleration feed-forward gain

8 RKG, KG= KG Gravitational offset

9 Reserved

10 F (no equal
sign)

Position loop control (set bit 0 to the
value 1 to make the PID parameters
take effect)

Moog Animatics Class 5 CANopen Guide Rev. H

Page 222 of 233

Object 60FCh: Position Demand Internal Value

Object 60FCh: Position Demand Internal Value

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

60FCh 000 Position Demand Internal
Value 80000000h 7FFFFFFFh 00000000h Yes Signed

32-bit
Read
Only

This object reports the position calculated by the motion profile; it takes into account the
acceleration and velocity targets. The value is in units of encoder counts.

When the motor is inactive or in torque mode, the value reported is simply the current
position.

Similar SmartMotor Commands: RPC

Object Description

INDEX 60FC
Name Position demand internal value
Object Code Variable
Data Type INTEGER32
Category Optional

Entry Description

Access RO
PDO Mapping Yes
Default Value 00000000h
Lower Limit 80000000h
Upper Limit 7FFFFFFFh
Unit -

Moog Animatics Class 5 CANopen Guide Rev. H

Page 223 of 233

Object 60FDh: Digital Inputs

Object 60FDh: Digital Inputs

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

60FDh 000 Digital Inputs 00000000h FFFFFFFFh Yes Unsigned
32-bit

Read
Only

This object reports the current state of the digital input signals from the I/O connector(s).

For details, see the table corresponding to your motor model:

Class 5 D-style motor

Bit Function

0 Negative limit (if enabled)

1 Positive limit (if enabled)

2 Not supported

3 Not supported

4–15 Reserved

16 General purpose input 0

17 General purpose input 1

18 General purpose input 2

19 General purpose input 3

20 General purpose input 4

21 General purpose input 5

22 General purpose input 6

23-31 Reserved

Moog Animatics Class 5 CANopen Guide Rev. H

Page 224 of 233

Object 60FDh: Digital Inputs

Class 5 M-style motor

Bit Function

0 Negative limit (if enabled)

1 Positive limit (if enabled)

2 Not supported

3 Not supported

4–15 Reserved

16 General purpose input 0

17 General purpose input 1

18 General purpose input 2

19 General purpose input 3

20 General purpose input 4

21 General purpose input 5

22 General purpose input 6

23 General purpose input 7

24 General purpose input 8

25 General purpose input 9

26 General purpose input 10

27 Not fault state

28 Drive enable input

29-31 Reserved

Moog Animatics Class 5 CANopen Guide Rev. H

Page 225 of 233

Object 60FEh: Digital Outputs

Object 60FEh: Digital Outputs

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

60FEh 000 Number of Entries 01h 02h 01h No Unsigned
8-bit

Read
Only

60FEh 001 Physical Outputs 00000000h FFFFFFFFh Yes Unsigned
32-bit

Read
Write

This object allows the digital outputs to the I/O connector(s) to be set or cleared.

NOTE: There is no support for subindex 2.

For details, see the table corresponding to your motor model:

Class 5 D-style motor

Bit Function

0 Brake Set - Not Supported

1-15 Reserved

16 General purpose output 0

17 General purpose output 1

18 General purpose output 2

19 General purpose output 3

20 General purpose output 4

21 General purpose output 5

22 General purpose output 6

23 Unconnected bit; remembers value

24-31 Reserved

Moog Animatics Class 5 CANopen Guide Rev. H

Page 226 of 233

Object 60FEh: Digital Outputs

Class 5 M-style motor

Bit Function

0 Brake Set - Not Supported

1-15 Reserved

16 General purpose output 0

17 General purpose output 1

18 General purpose output 2

19 General purpose output 3

20 General purpose output 4

21 General purpose output 5

22 General purpose output 6

23 General purpose output 7

24 General purpose output 8

25 General purpose output 9

26 General purpose output 10

27-31 Reserved

Moog Animatics Class 5 CANopen Guide Rev. H

Page 227 of 233

Object 60FFh: Target Velocity

Object 60FFh: Target Velocity

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

60FFh 000 Target Velocity 80000000h 7FFFFFFFh 00000000h Yes Signed
32-bit

Read
Write*

*Write access is restricted when the remote bit is cleared with the CANCTL(13,0) command.

This object only applies to Profile Velocity (PV) mode. The velocity profile will accelerate to
the specified speed and remain at that speed until a stop is commanded or a new speed is
specified.

Writing this value takes effect immediately in PV mode, assuming the motor is already in the
operation enabled state through Control Word object (6040h). The units are: (encoder counts
per sample period) * 65536.

Also, refer to Object 6081h: Profile Velocity in PP Mode on page 204.

Similar SmartMotor Commands: VT=, RVT

Moog Animatics Class 5 CANopen Guide Rev. H

Page 228 of 233

Object 6402h: Motor Type

Object 6402h: Motor Type

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

6402h 000 Motor Type 0000h FFFFh 000Ah No Unsigned
16-bit

Read
Only

This object reports the type of motor connected to the controller. The value of this object does
not change. It always reports 000Ah (10 decimal), which represents a "Sinusoidal PM BL
motor" (per the CiA 402 specification).

Moog Animatics Class 5 CANopen Guide Rev. H

Page 229 of 233

Object 6502h: Supported Drive Modes

Object 6502h: Supported Drive Modes

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

6502h 000 Supported Drive Modes 00000000h FFFFFFFFh 0000006Dh No Unsigned
32-bit

Read
Only

This object reports a value that corresponds to a bit field indicating the operational modes
supported by the drive. The value reports as the default value listed above and does not
change.

Bit Bit relating
to default value Mode

0 1 Supported Profile Position (PP)

1 0 Not supported Velocity (VL)

2 1 Supported Profile Velocity (PV)

3 1 Supported Torque (TQ)

4 0 Not supported Reserved

5 1 Supported Homing (HM)

6 1 Supported Interpolation (IP)

7 0 Not supported Cyclic Synchronous Profile (CSP)

8 0 Not supported Cyclic Synchronous Torque (CSV)

9 0 Not supported Cyclic Synchronous Torque (CST)

10–15 00 0000 Reserved

16–31 0000 0000 0000 0000 Manufacturer specific

Moog Animatics Class 5 CANopen Guide Rev. H

Page 230 of 233

Object 67FFh: Single Device Type

Object 67FFh: Single Device Type

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

67FFh 000 Single Device Type 00000000h FFFFFFFFh 00020192h No Unsigned
32-bit

Read
Only

This object specifies the type of device (profile) for objects in the range 6000h to 67FFh. Refer
to the following table the possible values and their corresponding functions.

Bit Value Function

0–15 0192h (402 decimal) DS402 device

16–23 02h (2 decimal) Servo drive

24–31 0 Reserved (manufacturer specific)

Also, refer to Object 1000h: Device Type on page 99.

Moog Animatics Class 5 CANopen Guide Rev. H

Page 231 of 233

Reference Documents

Reference Documents
The following CiA documents were referenced for this guide:

l CiA 402 CANopen - Drives and motion control device profile:

This specification is now comprised of the following IEC specifications:

l IEC 61800-7-1 (An abstracted view of motion control over a variety of protocols)

l IEC 61800-7-201 (Describes the implementation of the 402 specification)

l IEC 61800-7-301 (Describes the default settings of certain objects in the 402
specification)

l CiA 301 CANopen - Application layer and communication profile

The CiA documents are maintained by CAN in Automation (CiA):

http://www.can-cia.org/

The IEC documents are maintained by the International Electrotechnical Commission (IEC):

http://www.iec.ch/

Moog Animatics Class 5 CANopen Guide Rev. H

Page 232 of 233

http://www.cancia.org/
http://www.iec.ch/

PN: SC80100001-001
Rev. H

	Introduction
	Purpose
	Combitronic Technology
	I/O Device CAN Bus Master
	Time Sync for Electronic Gearing and Camming

	Abbreviations
	Safety Information
	Safety Symbols
	Other Safety Considerations
	Motor Sizing
	Environmental Considerations
	Machine Safety
	Documentation and Training
	Additional Equipment and Considerations

	Safety Information Resources

	Additional Documents
	Related Guides
	Other Documents

	Additional Resources
	CANopen Resources

	CANopen Overview
	CANopen Description
	CAN (CAN Bus)
	CANopen

	PDO and SDO Communication
	SDO
	PDO

	COB-ID Allocation
	NMT States
	NMT Control
	NMT Summary
	NMT State Machine Diagram

	PDO Communications
	Peer-to-Peer Communications
	Synchronous Communications

	Supported Features
	Supported
	Motion Modes
	NMT State Machine Master
	PDO Transmit on Event
	PDO Transmit on Timer Only
	PDO Transmit on Sync
	Dynamic PDO Mapping
	Heartbeat Producer
	Sync Producer

	Not Supported
	Emergency Messages
	Saving Parameters
	Heartbeat Consumer
	MPDO Communications
	CAN Bus Bit Rate
	PDO Transmit on RTR (Remote frames)
	Node Guarding
	TIME Service
	Sync Start

	Connections, Wiring and Status LEDs
	Connectors and Pinouts
	D-Style Motor Connectors and Pinouts
	D‑Style Motors: CDS Option Schematic
	CDS on the DA‑15 Connector
	CDS on the 7W2 Connector (CDS7)

	M-Style Motor Connectors and Pinouts

	Cable Diagram
	CAN Multidrop Cable Diagram
	Bus Termination
	Maximum Bus Length

	Status LEDs
	Other Communications with the Motor

	Manufacturer‑Specific Objects
	I/O
	User Variables
	Calling Subroutines
	Command Interface (Object 2500h)
	Command Interface
	Program Upload/Download
	Upload from Motor
	Download to Motor

	CiA 402 Drive and Motion Control Profile
	CiA 402 Profile Motion State Machine
	Control Words, Status Words and the Drive State Machine
	Status Word (Object 6041h)
	Control Word (Object 6040h)

	Motion Profiles
	Position Mode
	Absolute Position Mode Summary
	Absolute Position Mode Example
	Relative Position Example

	Velocity Mode
	Velocity Mode Summary
	Velocity Mode Example

	Torque Mode
	Torque Mode Summary
	Torque Mode Example

	Interpolated Position Mode
	Interpolated Position Mode Summary
	Example: Short Run on a Single Motor
	Example: Continuous Run on a Single Motor
	Example: Resuming Motion in IP Mode
	Synchronization
	User Bits
	Splining
	Variable‑Length Segments

	Homing Mode
	Homing Summary
	Homing Example

	PDO Mapping
	Overview
	Mapping and Communication Parameters Objects
	Communications Parameters Objects
	Mapping Parameters Objects

	Mapping Entries
	Mapping Procedure
	Time Sync Motors Mapping Procedure
	Example Start-up Sequence

	CANopen User Program Commands
	Address and Baud Rate Commands
	CADDR=frm
	CBAUD=frm

	CAN Error Reporting Commands
	=CAN, RCAN
	RB(2,4), x=B(2,4)

	Network Control Commands
	CANCTL(action, value)
	NMT(address, command code)
	SDORD(address, obj index, subindex, bytecount)
	SDOWR(address, obj index, subindex, bytecount, data)
	Exceptions to NMT, SDORD and SDOWR Commands

	Troubleshooting
	SDO Response Error Codes

	Object Reference
	Object Categories
	Communication Profile
	Object 1000h: Device Type
	Object 1001h: Error Register
	Object 1005h: COB-ID SYNC
	Object 1006h: Communication Cycle Period
	Object 1008h: Manufacturer Device Name
	Object 1009h: Manufacturer Hardware Version
	Object 100Ah: Manufacturer Software Version
	Object 1013h: High‑Resolution Timestamp
	Object 1017h: Producer Heartbeat Time
	Object 1018h: Identity Object
	Object 1200h: Server SDO Parameter 1
	Object 1400h: Receive PDO Communication Parameter 1
	Object 1401h: Receive PDO Communication Parameter 2
	Object 1402h: Receive PDO Communication Parameter 3
	Object 1403h: Receive PDO Communication Parameter 4
	Object 1404h: Receive PDO Communication Parameter 5
	Object 1600h: Receive PDO Mapping Parameter 1
	Object 1601h: Receive PDO Mapping Parameter 2
	Object 1602h: Receive PDO Mapping Parameter 3
	Object 1603h: Receive PDO Mapping Parameter 4
	Object 1604h: Receive PDO Mapping Parameter 5
	Object 1800h: Transmit PDO Communication Parameter 1
	Object 1801h: Transmit PDO Communication Parameter 2
	Object 1802h: Transmit PDO Communication Parameter 3
	Object 1803h: Transmit PDO Communication Parameter 4
	Object 1804h: Transmit PDO Communication Parameter 5
	Object 1A00h: Transmit PDO Mapping Parameter 1
	Object 1A01h: Transmit PDO Mapping Parameter 2
	Object 1A02h: Transmit PDO Mapping Parameter 3
	Object 1A03h: Transmit PDO Mapping Parameter 4
	Object 1A04h: Transmit PDO Mapping Parameter 5

	Manufacturer-Specific Profile
	Object 2000h: Node Id
	Object 2001h: Bit Rate Index
	Object 2100h: Port Configuration
	Object 2101h: Bit IO
	Object 2200h: User EEPROM
	Object 2201h: User Variable
	Object 2202h: Set Position Origin
	Object 2203h: Shift Position Origin
	Object 2204h: Mappable 32-bit Variables
	Object 2205h Negative Software Position Limit
	Object 2206h Positive Software Position Limit
	Object 2207h Encoder Modulo Limit
	Object 2208h Encoder Follow Data
	Object 2209h Encoder Follow Control
	Start/Stop Capability

	Object 220Ah MFMUL
	Object 220Bh MFDIV
	Object 220Ch MFA
	Object 220Dh MFD
	Object 2220h: 8-Bit Mappable Variables
	Object 2221h: 16-Bit Mappable Variables
	Object 2300h: Bus Voltage
	Object 2301h: RMS Current
	Object 2302h: Internal Temperature
	Object 2303h: Internal Clock
	Object 2304h: Motor Status
	Object 2305h: Motor Control
	Object 2306h: Motor Subroutine Index
	Object 2307h: Sample Period
	Object 2308h: Microsecond Clock
	Object 2309h: GOSUB R2
	Object 2400h: Interpolation Mode Status
	Object 2401h: Buffer Control
	Object 2402h: Buffer Setpoint
	Object 2403h: Interpolation User Bits
	Object 2404h: Interpolation Sample Clock
	Object 2500h: Encapsulated SmartMotor Command

	Drive and Motion Control Profile
	Object 6040h: Control Word
	Object 6041h: Status Word
	Object 605Ah: Quick Stop Option Code
	Object 605Dh: Halt Option Code
	Object 605Eh: Fault Reaction Option Code
	Object 6060h: Modes of Operation
	Object 6061h: Modes of Operation Display
	Object 6062h: Position Demand Value
	Object 6063h: Position Actual Internal Value
	Object 6064h: Position Actual Value
	Object 6065h: Following Error Window
	Object 606Bh: Velocity Demand Value
	Object 606Ch: Velocity Actual Value
	Object 6071h: Target Torque
	Object 6074h: Torque Demand Value
	Object 6077h: Torque Actual
	Object 6079h: DC Link Circuit Voltage
	Object 607Ah: Target Position
	Object 607Ch: Home Offset
	Object 6080h: Max Motor Speed
	Object 6081h: Profile Velocity in PP Mode
	Object 6083h: Profile Acceleration
	Object 6084h: Profile Deceleration
	Object 6085h: Quick Stop Deceleration
	Object 6087h: Torque Slope
	Object 608Fh: Position Encoder Resolution
	Object 6098h: Homing Method
	Object 6099h: Homing Speeds
	Object 609Ah: Homing Acceleration
	Object 60C0h: Interpolation Sub-Mode Select
	Object 60C1h: Interpolation Data Record
	Object 60C2h: Interpolation Time Period
	Object 60C4h: Interpolation Data Configuration
	Object 60F4h: Following Error Actual Value
	Object 60FBh: Position Control Parameter Set
	Object 60FCh: Position Demand Internal Value
	Object Description
	Entry Description

	Object 60FDh: Digital Inputs
	Object 60FEh: Digital Outputs
	Object 60FFh: Target Velocity
	Object 6402h: Motor Type
	Object 6502h: Supported Drive Modes
	Object 67FFh: Single Device Type

	Reference Documents

